Python:openpyxl这一篇就够了
Posted 轩哥啊哈OvO
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python:openpyxl这一篇就够了相关的知识,希望对你有一定的参考价值。
各位好,我是轩哥啊哈~ 本文展示如何使用 openpyxl 库在 Python 中使用 Excel 文件。openpyxl 是用于读取和写入 Excel 2010 xlsx / xlsm / xltx / xltm 文件的 Python 库。
目录
Excel xlsx
在本教程中,我们使用 xlsx 文件。 xlsx 是 Microsoft Excel 使用的开放 XML 电子表格文件格式的文件扩展名。 xlsm 文件支持宏。 xlsx 是专有的二进制格式,而 xlsx 是基于 Office Open XML 格式的。
$ sudo pip3 install openpyxl
我们使用pip3
工具安装openpyxl
。
Openpyxl 创建新文件
在第一个示例中,我们使用openpyxl
创建一个新的 xlsx 文件。
write_xlsx.py
#!/usr/bin/env python
from openpyxl import Workbook
import time
book = Workbook()
sheet = book.active
sheet['A1'] = 56
sheet['A2'] = 43
now = time.strftime("%x")
sheet['A3'] = now
book.save("sample.xlsx")
在示例中,我们创建一个新的 xlsx 文件。 我们将数据写入三个单元格。
from openpyxl import Workbook
从openpyxl
模块,我们导入Workbook
类。 工作簿是文档所有其他部分的容器。
book = Workbook()
我们创建一个新的工作簿。 始终使用至少一个工作表创建一个工作簿。
sheet = book.active
我们获得对活动工作表的引用。
sheet['A1'] = 56
sheet['A2'] = 43
我们将数值数据写入单元格 A1 和 A2。
now = time.strftime("%x")
sheet['A3'] = now
我们将当前日期写入单元格 A3。
book.save("sample.xlsx")
我们使用save()
方法将内容写入sample.xlsx
文件。
Openpyxl 写入单元格
写入单元格有两种基本方法:使用工作表的键(例如 A1 或 D3),或通过cell()
方法使用行和列表示法。
write2cell.py
#!/usr/bin/env python
from openpyxl import Workbook
book = Workbook()
sheet = book.active
sheet['A1'] = 1
sheet.cell(row=2, column=2).value = 2
book.save('write2cell.xlsx')
在示例中,我们将两个值写入两个单元格。
sheet['A1'] = 1
在这里,我们将数值分配给 A1 单元。
sheet.cell(row=2, column=2).value = 2
在这一行中,我们用行和列表示法写入单元格 B2。
Openpyxl 附加值
使用append()
方法,我们可以在当前工作表的底部附加一组值。
appending_values.py
#!/usr/bin/env python
from openpyxl import Workbook
book = Workbook()
sheet = book.active
rows = (
(88, 46, 57),
(89, 38, 12),
(23, 59, 78),
(56, 21, 98),
(24, 18, 43),
(34, 15, 67)
)
for row in rows:
sheet.append(row)
book.save('appending.xlsx')
在示例中,我们将三列数据附加到当前工作表中。
rows = (
(88, 46, 57),
(89, 38, 12),
(23, 59, 78),
(56, 21, 98),
(24, 18, 43),
(34, 15, 67)
)
数据存储在元组的元组中。
for row in rows:
sheet.append(row)
我们逐行浏览容器,并使用append()
方法插入数据行。
OpenPyXL 读取单元格
在下面的示例中,我们从sample.xlsx
文件中读取先前写入的数据。
read_cells.py
#!/usr/bin/env python
import openpyxl
book = openpyxl.load_workbook('sample.xlsx')
sheet = book.active
a1 = sheet['A1']
a2 = sheet['A2']
a3 = sheet.cell(row=3, column=1)
print(a1.value)
print(a2.value)
print(a3.value)
该示例加载一个现有的 xlsx 文件并读取三个单元格。
book = openpyxl.load_workbook('sample.xlsx')
使用load_workbook()
方法打开文件。
a1 = sheet['A1']
a2 = sheet['A2']
a3 = sheet.cell(row=3, column=1)
我们读取 A1,A2 和 A3 单元的内容。 在第三行中,我们使用cell()
方法获取 A3 单元格的值。
$ ./read_cells.py
56
43
10/26/16
这是示例的输出。
OpenPyXL 读取多个单元格
我们有以下数据表:
我们使用范围运算符读取数据。
read_cells2.py
#!/usr/bin/env python
import openpyxl
book = openpyxl.load_workbook('items.xlsx')
sheet = book.active
cells = sheet['A1': 'B6']
for c1, c2 in cells:
print("0:8 1:8".format(c1.value, c2.value))
在示例中,我们使用范围运算从两列读取数据。
cells = sheet['A1': 'B6']
在这一行中,我们从单元格 A1-B6 中读取数据。
for c1, c2 in cells:
print("0:8 1:8".format(c1.value, c2.value))
format()
功能用于在控制台上整洁地输出数据。
$ ./read_cells2.py
Items Quantity
coins 23
chairs 3
pencils 5
bottles 8
books 30
Openpyxl 按行迭代
iter_rows()
方法将工作表中的单元格返回为行。
iterating_by_rows.py
#!/usr/bin/env python
from openpyxl import Workbook
book = Workbook()
sheet = book.active
rows = (
(88, 46, 57),
(89, 38, 12),
(23, 59, 78),
(56, 21, 98),
(24, 18, 43),
(34, 15, 67)
)
for row in rows:
sheet.append(row)
for row in sheet.iter_rows(min_row=1, min_col=1, max_row=6, max_col=3):
for cell in row:
print(cell.value, end=" ")
print()
book.save('iterbyrows.xlsx')
该示例逐行遍历数据。
for row in sheet.iter_rows(min_row=1, min_col=1, max_row=6, max_col=3):
我们提供了迭代的边界。
$ ./iterating_by_rows.py
88 46 57
89 38 12
23 59 78
56 21 98
24 18 43
34 15 67
Openpyxl 按列迭代
iter_cols()
方法将工作表中的单元格作为列返回。
iterating_by_columns.py
#!/usr/bin/env python
from openpyxl import Workbook
book = Workbook()
sheet = book.active
rows = (
(88, 46, 57),
(89, 38, 12),
(23, 59, 78),
(56, 21, 98),
(24, 18, 43),
(34, 15, 67)
)
for row in rows:
sheet.append(row)
for row in sheet.iter_cols(min_row=1, min_col=1, max_row=6, max_col=3):
for cell in row:
print(cell.value, end=" ")
print()
book.save('iterbycols.xlsx')
该示例逐列遍历数据。
$ ./iterating_by_columns.py
88 89 23 56 24 34
46 38 59 21 18 15
57 12 78 98 43 67
统计
对于下一个示例,我们需要创建一个包含数字的 xlsx 文件。 例如,我们使用RANDBETWEEN()
函数在 10 列中创建了 25 行数字。
mystats.py
#!/usr/bin/env python
import openpyxl
import statistics as stats
book = openpyxl.load_workbook('numbers.xlsx', data_only=True)
sheet = book.active
rows = sheet.rows
values = []
for row in rows:
for cell in row:
values.append(cell.value)
print("Number of values: 0".format(len(values)))
print("Sum of values: 0".format(sum(values)))
print("Minimum value: 0".format(min(values)))
print("Maximum value: 0".format(max(values)))
print("Mean: 0".format(stats.mean(values)))
print("Median: 0".format(stats.median(values)))
print("Standard deviation: 0".format(stats.stdev(values)))
print("Variance: 0".format(stats.variance(values)))
在示例中,我们从工作表中读取所有值并计算一些基本统计信息。
import statistics as stats
导入statistics
模块以提供一些统计功能,例如中值和方差。
book = openpyxl.load_workbook('numbers.xlsx', data_only=True)
使用data_only
选项,我们从单元格而不是公式中获取值。
rows = sheet.rows
我们得到所有不为空的单元格行。
for row in rows:
for cell in row:
values.append(cell.value)
在两个 for 循环中,我们从单元格中形成一个整数值列表。
print("Number of values: 0".format(len(values)))
print("Sum of values: 0".format(sum(values)))
print("Minimum value: 0".format(min(values)))
print("Maximum value: 0".format(max(values)))
print("Mean: 0".format(stats.mean(values)))
print("Median: 0".format(stats.median(values)))
print("Standard deviation: 0".format(stats.stdev(values)))
print("Variance: 0".format(stats.variance(values)))
我们计算并打印有关值的数学统计信息。 一些功能是内置的,其他功能是通过statistics
模块导入的。
$ ./mystats.py
Number of values: 312
Sum of values: 15877
Minimum value: 0
Maximum value: 100
Mean: 50.88782051282051
Median: 54.0
Standard deviation: 28.459203819700967
Variance: 809.9262820512821
Openpyxl 过滤器&排序数据
图纸具有auto_filter
属性,该属性允许设置过滤条件和排序条件。
请注意,Openpyxl 设置了条件,但是我们必须在电子表格应用中应用它们。
filter_sort.py
#!/usr/bin/env python
from openpyxl import Workbook
wb = Workbook()
sheet = wb.active
data = [
['Item', 'Colour'],
['pen', 'brown'],
['book', 'black'],
['plate', 'white'],
['chair', 'brown'],
['coin', 'gold'],
['bed', 'brown'],
['notebook', 'white'],
]
for r in data:
sheet.append(r)
sheet.auto_filter.ref = 'A1:B8'
sheet.auto_filter.add_filter_column(1, ['brown', 'white'])
sheet.auto_filter.add_sort_condition('B2:B8')
wb.save('filtered.xlsx')
在示例中,我们创建一个包含项目及其颜色的工作表。 我们设置一个过滤器和一个排序条件。
Openpyxl 维度
为了获得那些实际包含数据的单元格,我们可以使用维度。
dimensions.py
#!/usr/bin/env python
from openpyxl import Workbook
book = Workbook()
sheet = book.active
sheet['A3'] = 39
sheet['B3'] = 19
rows = [
(88, 46),
(89, 38),
(23, 59),
(56, 21),
(24, 18),
(34, 15)
]
for row in rows:
sheet.append(row)
print(sheet.dimensions)
print("Minimum row: 0".format(sheet.min_row))
print("Maximum row: 0".format(sheet.max_row))
print("Minimum column: 0".format(sheet.min_column))
print("Maximum column: 0".format(sheet.max_column))
for c1, c2 in sheet[sheet.dimensions]:
print(c1.value, c2.value)
book.save('dimensions.xlsx')
该示例计算两列数据的维数。
sheet['A3'] = 39
sheet['B3'] = 19
rows = [
(88, 46),
(89, 38),
(23, 59),
(56, 21),
(24, 18),
(34, 15)
]
for row in rows:
sheet.append(row)
我们将数据添加到工作表。 请注意,我们从第三行开始添加。
print(sheet.dimensions)
dimensions
属性返回非空单元格区域的左上角和右下角单元格。
print("Minimum row: 0".format(sheet.min_row))
print("Maximum row: 0".format(sheet.max_row))
使用min_row
和max_row
属性,我们可以获得包含数据的最小和最大行。
print("Minimum column: 0".format(sheet.min_column))
print("Maximum column: 0".format(sheet.max_column))
通过min_column
和max_column
属性,我们获得了包含数据的最小和最大列。
for c1, c2 in sheet[sheet.dimensions]:
print(c1.value, c2.value)
我们遍历数据并将其打印到控制台。
$ ./dimensions.py
A3:B9
Minimum row: 3
Maximum row: 9
Minimum column: 1
Maximum column: 2
39 19
88 46
89 38
23 59
56 21
24 18
34 15
工作表
每个工作簿可以有多个工作表。
Figure: Sheets
让我们有一张包含这三张纸的工作簿。
sheets.py
#!/usr/bin/env python
import openpyxl
book = openpyxl.load_workbook('sheets.xlsx')
print(book.get_sheet_names())
active_sheet = book.active
print(type(active_sheet))
sheet = book.get_sheet_by_name("March")
print(sheet.title)
该程序可用于 Excel 工作表。
print(book.get_sheet_names())
get_sheet_names()
方法返回工作簿中可用工作表的名称。
active_sheet = book.active
print(type(active_sheet))
我们获取活动表并将其类型打印到终端。
sheet = book.get_sheet_by_name("March")
我们使用get_sheet_by_name()
方法获得对工作表的引用。
print(sheet.title)
检索到的工作表的标题将打印到终端。
$ ./sheets.py
['January', 'February', 'March']
<class 'openpyxl.worksheet.worksheet.Worksheet'>
March
这是程序的输出。
sheets2.py
#!/usr/bin/env python
import openpyxl
book = openpyxl.load_workbook('sheets.xlsx')
book.create_sheet("April")
print(book.sheetnames)
sheet1 = book.get_sheet_by_name("January")
book.remove_sheet(sheet1)
print(book.sheetnames)
book.create_sheet("January", 0)
print(book.sheetnames)
book.save('sheets2.xlsx')
在此示例中,我们创建一个新工作表。
book.create_sheet("April")
使用create_sheet()
方法创建一个新图纸。
print(book.sheetnames)
图纸名称也可以使用sheetnames
属性显示。
book.remove_sheet(sheet1)
可以使用remove_sheet()
方法将纸张取出。
book.create_sheet("January", 0)
可以在指定位置创建一个新图纸。 在我们的例子中,我们在索引为 0 的位置创建一个新工作表。
$ ./sheets2.py
['January', 'February', 'March', 'April']
['February', 'March', 'April']
['January', 'February', 'March', 'April']
可以更改工作表的背景颜色。
sheets3.py
#!/usr/bin/env python
import openpyxl
book = openpyxl.load_workbook('sheets.xlsx')
sheet = book.get_sheet_by_name("March")
sheet.sheet_properties.tabColor = "0072BA"
book.save('sheets3.xlsx')
该示例修改了标题为“ March”的工作表的背景颜色。
sheet.sheet_properties.tabColor = "0072BA"
我们将tabColor
属性更改为新颜色。
第三工作表的背景色已更改为某种蓝色。
合并单元格
单元格可以使用merge_cells()
方法合并,而可以不使用unmerge_cells()
方法合并。 当我们合并单元格时,除了左上角的所有单元格都将从工作表中删除。
merging_cells.py
#!/usr/bin/env python
from openpyxl import Workbook
from openpyxl.styles import Alignment
book = Workbook()
sheet = book.active
sheet.merge_cells('A1:B2')
cell = sheet.cell(row=1, column=1)
cell.value = 'Sunny day'
cell.alignment = Alignment(horizontal='center', vertical='center')
book.save('merging.xlsx')
在该示例中,我们合并了四个单元格:A1,B1,A2 和 B2。 最后一个单元格中的文本居中。
from openpyxl.styles import Alignment
为了使文本在最后一个单元格中居中,我们使用了openpyxl.styles
模块中的Alignment
类。
sheet.merge_cells('A1:B2')
我们用merge_cells()
方法合并四个单元格。
cell = sheet.cell(row=1, column=1)
我们得到了最后一个单元格。
cell.value = 'Sunny day'
cell.alignment = Alignment(horizontal='center', vertical='center')
我们将文本设置为合并的单元格并更新其对齐方式。
Openpyxl 冻结窗格
冻结窗格时,在滚动到工作表的另一个区域时,我们会保持工作表的某个区域可见。
freezing.py
#!/usr/bin/env python
from openpyxl import Workbook
from openpyxl.styles import Alignment
book = Workbook()
sheet = book.active
sheet.freeze_panes = 'B2'
book.save('freezing.xlsx')
该示例通过单元格 B2 冻结窗格。
sheet.freeze_panes = 'B2'
要冻结窗格,我们使用freeze_panes
属性。
Openpyxl 公式
下一个示例显示如何使用公式。 openpyxl
不进行计算; 它将公式写入单元格。
formulas.py
#!/usr/bin/env python
from openpyxl import Workbook
book = Workbook()
sheet = book.active
rows = (
(34, 26),
(88, 36),
(24, 29),
(15, 22),
(56, 13),
(76, 18)
)
for row in rows:
sheet.append(row)
cell = sheet.cell(row=7, column=2)
cell.value = "=SUM(A1:B6)"
cell.font = cell.font.copy(bold=True)
book.save('formulas.xlsx')
在示例中,我们使用SUM()
函数计算所有值的总和,并以粗体显示输出样式。
rows = (
(34, 26),
(88, 36),
(24, 29),
(15, 22),
(56, 13),
(76, 18)
)
for row in rows:
sheet.append(row)
我们创建两列数据。
cell = sheet.cell(row=7, column=2)
我们得到显示计算结果的单元格。
cell.value = "=SUM(A1:B6)"
我们将一个公式写入单元格。
cell.font = cell.font.copy(bold=True)
我们更改字体样式。
OpenPyXL 图像
在下面的示例中,我们显示了如何将图像插入到工作表中。
write_image.py
#!/usr/bin/env python
from openpyxl import Workbook
from openpyxl.drawing.image import Image
book = Workbook()
sheet = book.active
img = Image("icesid.png")
sheet['A1'] = 'This is Sid'
sheet.add_image(img, 'B2')
book.save("sheet_image.xlsx")
在示例中,我们将图像写到一张纸上。
from openpyxl.drawing.image import Image
我们使用openpyxl.drawing.image
模块中的Image
类。
img = Image("icesid.png")
创建一个新的Image
类。 icesid.png
图像位于当前工作目录中。
sheet.add_image(img, 'B2')
我们使用add_image()
方法添加新图像。
Openpyxl 图表
openpyxl
库支持创建各种图表,包括条形图,折线图,面积图,气泡图,散点图和饼图。
根据文档,openpyxl
仅支持在工作表中创建图表。 现有工作簿中的图表将丢失。
create_bar_chart.py
#!/usr/bin/env python
from openpyxl import Workbook
from openpyxl.chart import (
Reference,
Series,
BarChart
)
book = Workbook()
sheet = book.active
rows = [
("USA", 46),
("China", 38),
("UK", 29),
("Russia", 22),
("South Korea", 13),
("Germany", 11)
]
for row in rows:
sheet.append(row)
data = Reference(sheet, min_col=2, min_row=1, max_col=2, max_row=6)
categs = Reference(sheet, min_col=1, min_row=1, max_row=6)
chart = BarChart()
chart.add_data(data=data)
chart.set_categories(categs)
chart.legend = None
chart.y_axis.majorGridlines = None
chart.varyColors = True
chart.title = "Olympic Gold medals in London"
sheet.add_chart(chart, "A8")
book.save("bar_chart.xlsx")
在此示例中,我们创建了一个条形图,以显示 2012 年伦敦每个国家/地区的奥运金牌数量。
from openpyxl.chart import (
Reference,
Series,
BarChart
)
openpyxl.chart
模块具有使用图表的工具。
book = Workbook()
sheet = book.active
创建一个新的工作簿。
rows = [
("USA", 46),
("China", 38),
("UK", 29),
("Russia", 22),
("South Korea", 13),
("Germany", 11)
]
for row in rows:
sheet.append(row)
我们创建一些数据并将其添加到活动工作表的单元格中。
data = Reference(sheet, min_col=2, min_row=1, max_col=2, max_row=6)
对于Reference
类,我们引用表中代表数据的行。 在我们的案例中,这些是奥运金牌的数量。
categs = Reference(sheet, min_col=1, min_row=1, max_row=6)
我们创建一个类别轴。 类别轴是将数据视为一系列非数字文本标签的轴。 在我们的案例中,我们有代表国家名称的文本标签。
chart = BarChart()
chart.add_data(data=data)
chart.set_categories(categs)
我们创建一个条形图并为其设置数据和类别。
chart.legend = None
chart.y_axis.majorGridlines = None
使用legend
和majorGridlines
属性,可以关闭图例和主要网格线。
chart.varyColors = True
将varyColors
设置为True
,每个条形都有不同的颜色。
chart.title = "Olympic Gold medals in London"
为图表设置标题。
sheet.add_chart(chart, "A8")
使用add_chart()
方法将创建的图表添加到工作表中。
在本教程中,我们使用了 openpyxl 库。 我们已经从 Excel 文件中读取数据,并将数据写入 Excel 文件中。
Python爬虫入门这一篇就够了
何谓爬虫
所谓爬虫,就是按照一定的规则,自动的从网络中抓取信息的程序或者脚本。万维网就像一个巨大的蜘蛛网,我们的爬虫就是上面的一个蜘蛛,不断的去抓取我们需要的信息。
爬虫三要素
- 抓取
- 分析
- 存储
基础的抓取操作
1、urllib
在Python2.x中我们可以通过urllib 或者urllib2 进行网页抓取,但是再Python3.x 移除了urllib2。只能通过urllib进行操作
import urllib.request response = urllib.request.urlopen(\'https://blog.csdn.net/weixin_43499626\') print(response.read().decode(\'utf-8\'))
带参数的urllib
url = \'https://blog.csdn.net/weixin_43499626\' url = url + \'?\' + key + \'=\' + value1 + \'&\' + key2 + \'=\' + value2
2、requests
requests库是一个非常实用的HTPP客户端库,是抓取操作最常用的一个库。Requests库满足很多需求
import requests # get请求 response = requests.get(url=\'https://blog.csdn.net/weixin_43499626\') print(response.text) #打印解码后的返回数据 # 带参数的requests get请求 response = requests.get(url=\'https://blog.csdn.net/weixin_43499626\', params={\'key1\':\'value1\', \'key2\':\'value2\'})
需要登录的情况下
1、表单提交登录
向服务器发送一个post请求并携带相关参数,将服务器返回的cookie保存在本地,cookie是服务器在客户端上的“监视器”,记录了登录信息等。客户端通过识别请求携带的cookie,确定是否登录
params = {\'username\': \'root\', \'passwd\': \'root\'} response = requests.post("http:xxx.com/login", data=params) for key,value in response.cookies.items(): print(\'key = \', key + \' ||| value :\'+ value)
2、cookie登录
我们可以将登录的cookie存储在文件中,
import urllib.request import http.cookiejar """ 保存登录的cookie """ """ MozillaCookieJar : cookiejar的子类 从FileCookieJar派生而来,创建与Mozilla浏览器 cookies.txt兼容的FileCookieJar实例。 """ cookie = http.cookiejar.MozillaCookieJar(\'cookie.txt\') # 构建一个cookie的处理器 handler = urllib.request.HTTPCookieProcessor(cookie) # 获取一个opener对象 opener = urllib.request.build_opener(handler) # # 获取一个请求对象 request = urllib.request.Request(\'http://flights.ctrip.com/\',headers={"Connection": "keep-alive"}) # 请求服务器,获取响应对象。cookie会在response里一起响应 response = opener.open(request) # 保存cookie到文件 cookie.save(ignore_discard=True, ignore_expires=True) """ 请求携带文件中的cookie """ import urllib.request import http.cookiejar cookie = http.cookiejar.MozillaCookieJar() cookie.load(\'cookie.txt\', ignore_discard=True, ignore_expires=True) handler = urllib.request.HTTPCookieProcessor(cookie) opener = urllib.request.build_opener(handler) request = urllib.request.Request(\'http://flights.ctrip.com/\') html = opener.open(request).read().decode(\'gbk\') print(html)
常见的反爬有哪些
1、通过user-agent来控制访问
user-agent能够使服务器识别出用户的操作系统及版本、cpu类型、浏览器类型和版本。很多网站会设置user-agent白名单,只有在白名单范围内的请求才能正常访问。所以在我们的爬虫代码中需要设置user-agent伪装成一个浏览器请求。有时候服务器还可能会校验Referer,所以还可能需要设置Referer(用来表示此时的请求是从哪个页面链接过来的)
# 设置请求头信息 headers = { \'Host\': \'https://blog.csdn.net\', \'Referer\': \'https://blog.csdn.net/weixin_43499626/article/details/85875090\', \'User-Agent\': \'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36\' } response = requests.get("http://www.baidu.com", headers=headers)
如下是CSDN中的Request Header中的信息
accept: */* accept-encoding: gzip, deflate, br accept-language: zh-CN,zh;q=0.9 content-length: 0 cookie: bdshare_firstime=1500xxxxxxxx.............. origin: https://blog.csdn.net referer: https://blog.csdn.net/weixin_43499626/article/details/85875090 user-agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36 x-requested-with: XMLHttpRequest
2、通过IP来限制
当我们用同一个ip多次频繁访问服务器时,服务器会检测到该请求可能是爬虫操作。因此就不能正常的响应页面的信息了。
解决办法常用的是使用IP代理池。网上就有很多提供代理的网站、
proxies = { "http": "http://119.101.125.56", "https": "http://119.101.125.1", } response = requests.get("http://www.baidu.com", proxies=random.choices(proxies))
3、设置请求间隔
import time time.sleep(1)
4、自动化测试工具Selenium
Web应用程序测试的Selenium工具。该工具可以用于单元测试,集成测试,系统测试等等。它可以像真正的用户一样去操作浏览器(包括字符填充、鼠标点击、获取元素、页面切换),支持Mozilla Firefox、Google、Chrome、Safari、Opera、IE等等浏览器。
5、参数通过加密
某些网站可能会将参数进行某些加密,或者对参数进行拼接发送给服务器,以此来达到反爬虫的目的。这个时候我们可以试图通过js代码,查看破解的办法。
连接xxx
或者可以使用"PhantomJS",PhantomJS是一个基于Webkit的"无界面"(headless)浏览器,它会把网站加载到内存并执行页面上的JavaScript,因为不会展示图形界面,所以运行起来比完整的浏览器更高效。
6、通过robots.txt来限制爬虫
robots.txt是一个限制爬虫的规范,该文件是用来声明哪些东西不能被爬取。如果根目录存在该文件,爬虫就会按照文件的内容来爬取指定的范围。
浏览器访问https://www.taobao.com/robots.txt
可以查看淘宝的robots.txt文件
部分内容如下
User-agent: Baiduspider Disallow: /product/ Disallow: / User-Agent: Googlebot Disallow: / User-agent: Bingbot Disallow: / User-Agent: 360Spider Disallow: / User-Agent: Yisouspider Disallow: / User-Agent: Sogouspider Disallow: / User-Agent: Yahoo! Slurp Disallow: / User-Agent: * Disallow: /
可以看出淘宝拒绝了百度爬虫、谷歌爬虫、必应爬虫、360爬虫、神马爬虫,搜狗爬虫、雅虎爬虫等约束。
分析
我们可以分析爬取的网页内容,获得我们真正需要的数据,常用的有正则表达式,BeautifulSoup,XPath、lxml等
正则表达式是进行内容匹配,将符合要求的内容全部获取;
xpath()能将字符串转化为标签,它会检测字符串内容是否为标签,但是不能检测出内容是否为真的标签;
Beautifulsoup是Python的一个第三方库,它的作用和 xpath 作用一样,都是用来解析html数据的相比之下,xpath的速度会快一点,因为xpath底层是用c来实现的
存储
通过分析网页内容,获取到我们想要的数据,我们可以选择存到文本文件中,亦可以存储在数据库中,常用的数据库有MySql、MongoDB
存储为json文件
import json dictObj = { \'小明\':{ \'age\': 15, \'city\': \'beijing\', }, \'汤姆\': { \'age\': 16, \'city\': \'guangzhou\', } } jsObj = json.dumps(dictObj, ensure_ascii=False) fileObject = open(\'jsonFile.json\', \'w\') fileObject.write(jsObj) fileObject.close()
存储为cvs文件
import csv with open(\'student.csv\', \'w\', newline=\'\') as csvfile: writer = csv.writer(csvfile) writer.writerow([\'姓名\', \'年龄\', \'城市\']) writer.writerows([[\'小明\', 15 , \'北京\'],[\'汤姆\', 16, \'广州\']])
存储到Mongo
# mongo服务 client = pymongo.MongoClient(\'mongodb://127.0.0.1:27017/\') # test数据库 db = client.test # student表,没有自动创建 student_db = db.student student_json = { \'name\': \'小明\', \'age\': 15, \'city\': \'北京\' } student_db.insert(student_json)
最后推荐一下我自学爬虫时看过的《Python3网络爬虫开发实战》:
链接:https://pan.baidu.com/s/1_hSYBZk3F_a4SXz0YTUQ8A
提取码:6oxu
以上是关于Python:openpyxl这一篇就够了的主要内容,如果未能解决你的问题,请参考以下文章