数仓搭建ADS层

Posted 今夜月色很美

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数仓搭建ADS层相关的知识,希望对你有一定的参考价值。

1、建表说明

ADS层不涉及建模,建表根据具体需求而定

2、访客主题

2.1、访客统计

该需求为访客综合统计,其中包含若干指标,以下为对每个指标的解释说明。

指标说明对应字段
访客数统计访问人数uv_count
页面停留时长统计所有页面访问记录总时长,以秒为单位duration_sec
平均页面停留时长统计每个会话平均停留时长,以秒为单位avg_duration_sec
页面浏览总数统计所有页面访问记录总数page_count
平均页面浏览数统计每个会话平均浏览页面数avg_page_count
会话总数统计会话总数sv_count
跳出数统计只浏览一个页面的会话个数bounce_count
跳出率只有一个页面的会话的比例bounce_rate

1.建表语句

DROP TABLE IF EXISTS ads_visit_stats;
CREATE EXTERNAL TABLE ads_visit_stats (
  `dt` STRING COMMENT '统计日期',
  `is_new` STRING COMMENT '新老标识,1:新,0:老',
  `recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
  `channel` STRING COMMENT '渠道',
  `uv_count` BIGINT COMMENT '日活(访问人数)',
  `duration_sec` BIGINT COMMENT '页面停留总时长',
  `avg_duration_sec` BIGINT COMMENT '一次会话,页面停留平均时长,单位为描述',
  `page_count` BIGINT COMMENT '页面总浏览数',
  `avg_page_count` BIGINT COMMENT '一次会话,页面平均浏览数',
  `sv_count` BIGINT COMMENT '会话次数',
  `bounce_count` BIGINT COMMENT '跳出数',
  `bounce_rate` DECIMAL(16,2) COMMENT '跳出率'
) COMMENT '访客统计'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\\t'
LOCATION '/warehouse/gmall/ads/ads_visit_stats/';

2.数据装载

思路分析:该需求的关键点为会话的划分,总体实现思路可分为以下几步:
第一步:对所有页面访问记录进行会话的划分。
第二步:统计每个会话的浏览时长和浏览页面数。
第三步:统计上述各指标。
insert overwrite table ads_visit_stats
select * from ads_visit_stats
union
select
    '2022-04-11' dt,
    is_new,
    recent_days,
    channel,
    count(distinct(mid_id)) uv_count,
    cast(sum(duration)/1000 as bigint) duration_sec,
    cast(avg(duration)/1000 as bigint) avg_duration_sec,
    sum(page_count) page_count,
    cast(avg(page_count) as bigint) avg_page_count,
    count(*) sv_count,
    sum(if(page_count=1,1,0)) bounce_count,
    cast(sum(if(page_count=1,1,0))/count(*)*100 as decimal(16,2)) bounce_rate
from
(
    select
        session_id,
        mid_id,
        is_new,
        recent_days,
        channel,
        count(*) page_count,
        sum(during_time) duration
    from
    (
        select
            mid_id,
            channel,
            recent_days,
            is_new,
            last_page_id,
            page_id,
            during_time,
            concat(mid_id,'-',last_value(if(last_page_id is null,ts,null),true) over (partition by recent_days,mid_id order by ts)) session_id
        from
        (
            select
                mid_id,
                channel,
                last_page_id,
                page_id,
                during_time,
                ts,
                recent_days,
                if(visit_date_first>=date_add('2022-04-11',-recent_days+1),'1','0') is_new
            from
            (
                select
                    t1.mid_id,
                    t1.channel,
                    t1.last_page_id,
                    t1.page_id,
                    t1.during_time,
                    t1.dt,
                    t1.ts,
                    t2.visit_date_first
                from
                (
                    select
                        mid_id,
                        channel,
                        last_page_id,
                        page_id,
                        during_time,
                        dt,
                        ts
                    from dwd_page_log
                    where dt>=date_add('2022-04-11',-30)
                )t1
                left join
                (
                    select
                        mid_id,
                        visit_date_first
                    from dwt_visitor_topic
                    where dt='2022-04-11'
                )t2
                on t1.mid_id=t2.mid_id
            )t3 lateral view explode(Array(1,7,30)) tmp as recent_days
            where dt>=date_add('2022-04-11',-recent_days+1)
        )t4
    )t5
    group by session_id,mid_id,is_new,recent_days,channel
)t6
group by is_new,recent_days,channel;

2.2 路径分析

用户路径分析,顾名思义,就是指用户在APP或网站中的访问路径。为了衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,时常要对访问路径进行分析。
用户访问路径的可视化通常使用桑基图。如下图所示,该图可真实还原用户的访问路径,包括页面跳转和页面访问次序。
桑基图需要我们提供每种页面跳转的次数,每个跳转由source/target表示,source指跳转起始页面,target表示跳转终到页面。

1.建表语句

DROP TABLE IF EXISTS ads_page_path;
CREATE EXTERNAL TABLE ads_page_path
(
    `dt` STRING COMMENT '统计日期',
    `recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `source` STRING COMMENT '跳转起始页面ID',
    `target` STRING COMMENT '跳转终到页面ID',
    `path_count` BIGINT COMMENT '跳转次数'
)  COMMENT '页面浏览路径'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\\t'
LOCATION '/warehouse/gmall/ads/ads_page_path/';

2.数据装载

思路分析:该需求要统计的就是每种跳转的次数,故理论上对source/target进行分组count()即可。统计时需注意以下两点:
第一点:桑基图的source不允许为空,但target可为空。
第二点:桑基图所展示的流程不允许存在环。
insert overwrite table ads_page_path
select * from ads_page_path
union
select
    '2022-04-11',
    recent_days,
    source,
    target,
    count(*)
from
(
    select
        recent_days,
        concat('step-',step,':',source) source,
        concat('step-',step+1,':',target) target
    from
    (
        select
            recent_days,
            page_id source,
            lead(page_id,1,null) over (partition by recent_days,session_id order by ts) target,
            row_number() over (partition by recent_days,session_id order by ts) step
        from
        (
            select
                recent_days,
                last_page_id,
                page_id,
                ts,
                concat(mid_id,'-',last_value(if(last_page_id is null,ts,null),true) over (partition by mid_id,recent_days order by ts)) session_id
            from dwd_page_log lateral view explode(Array(1,7,30)) tmp as recent_days
            where dt>=date_add('2022-04-11',-30)
            and dt>=date_add('2022-04-11',-recent_days+1)
        )t2
    )t3
)t4
group by recent_days,source,target;

3 用户主题

3.1 用户统计

该需求为用户综合统计,其中包含若干指标,以下为对每个指标的解释说明。

指标说明对应字段
新增用户数统计新增注册用户人数new_user_count
新增下单用户数统计新增下单用户人数new_order_user_count
下单总金额统计所有订单总额order_final_amount
下单用户数统计下单用户总数order_user_count
未下单用户数统计活跃但未下单用户数no_order_user_count

1.建表语句

DROP TABLE IF EXISTS ads_user_total;
CREATE EXTERNAL TABLE `ads_user_total` (
  `dt` STRING COMMENT '统计日期',
  `recent_days` BIGINT COMMENT '最近天数,0:累积值,1:最近1天,7:最近7天,30:最近30天',
  `new_user_count` BIGINT COMMENT '新注册用户数',
  `new_order_user_count` BIGINT COMMENT '新增下单用户数',
  `order_final_amount` DECIMAL(16,2) COMMENT '下单总金额',
  `order_user_count` BIGINT COMMENT '下单用户数',
  `no_order_user_count` BIGINT COMMENT '未下单用户数(具体指活跃用户中未下单用户)'
) COMMENT '用户统计'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\\t'
LOCATION '/warehouse/gmall/ads/ads_user_total/';

2.数据装载

insert overwrite table ads_user_total
select * from ads_user_total
union
select
    '2022-04-11',
    recent_days,
    sum(if(login_date_first>=recent_days_ago,1,0)) new_user_count,
    sum(if(order_date_first>=recent_days_ago,1,0)) new_order_user_count,
    sum(order_final_amount) order_final_amount,
    sum(if(order_final_amount>0,1,0)) order_user_count,
    sum(if(login_date_last>=recent_days_ago and order_final_amount=0,1,0)) no_order_user_count
from
(
    select
        recent_days,
        user_id,
        login_date_first,
        login_date_last,
        order_date_first,
        case when recent_days=0 then order_final_amount
             when recent_days=1 then order_last_1d_final_amount
             when recent_days=7 then order_last_7d_final_amount
             when recent_days=30 then order_last_30d_final_amount
        end order_final_amount,
        if(recent_days=0,'1970-01-01',date_add('2022-04-11',-recent_days+1)) recent_days_ago
    from dwt_user_topic lateral view explode(Array(0,1,7,30)) tmp as recent_days
    where dt='2022-04-11'
)t1
group by recent_days;

3.2 用户变动统计

该需求包括两个指标,分别为流失用户数和回流用户数,以下为对两个指标的解释说明。

指标说明对应字段
流失用户数之前活跃过的用户,最近一段时间未活跃,就称为流失用户。此处要求统计7日前(只包含7日前当天)活跃,但最近7日未活跃的用户总数。user_churn_count
回流用户数之前的活跃用户,一段时间未活跃(流失),今日又活跃了,就称为回流用户。此处要求统计回流用户总数。new_order_user_count

1.建表语句

DROP TABLE IF EXISTS ads_user_change;
CREATE EXTERNAL TABLE `ads_user_change` (
  `dt` STRING COMMENT '统计日期',
  `user_churn_count` BIGINT COMMENT '流失用户数',
  `user_back_count` BIGINT COMMENT '回流用户数'
) COMMENT '用户变动统计'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\\t'
LOCATION '/warehouse/gmall/ads/ads_user_change/';

2.数据装载

思路分析:
流失用户:末次活跃时间为7日前的用户即为流失用户。
回流用户:末次活跃时间为今日,上次活跃时间在8日前的用户即为回流用户。
insert overwrite table ads_user_change
select * from ads_user_change
union
select
    churn.dt,
    user_churn_count,
    user_back_count
from
(
    select
        '2022-04-11' dt,
        count(*) user_churn_count
    from dwt_user_topic
    where dt='2022-04-11'
    and login_date_last=date_add('2022-04-11',-7)
)churn
join
(
    select
        '2022-04-11' dt,
        count(*) user_back_count
    from
    (
        select
            user_id,
            login_date_last
        from dwt_user_topic
        where dt='2022-04-11'
        and login_date_last='2022-04-11'
    )t1
    join
    (
        select
            user_id,
            login_date_last login_date_previous
        from dwt_user_topic
        where dt=date_add('2022-04-11',-1)
    )t2
    on t1.user_id=t2.user_id
    where datediff(login_date_last,login_date_previous)>=8
)back
on churn.dt=back.dt;

3.3 用户行为漏斗分析

漏斗分析是一个数据分析模型,它能够科学反映一个业务过程从起点到终点各阶段用户转化情况。由于其能将各阶段环节都展示出来,故哪个阶段存在问题,就能一目了然。

该需求要求统计一个完整的购物流程各个阶段的人数。

1.建表语句

DROP TABLE IF EXISTS ads_user_action;
CREATE EXTERNAL TABLE `ads_user_action` (
  `dt` STRING COMMENT '统计日期',
  `recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
  `home_count` BIGINT COMMENT '浏览首页人数',
  `good_detail_count` BIGINT COMMENT '浏览商品详情页人数',
  `cart_count` BIGINT COMMENT '加入购物车人数',
  `order_count` BIGINT COMMENT '下单人数',
  `payment_count` BIGINT COMMENT '支付人数'
) COMMENT '漏斗分析'
ROW FORMAT DELIMITED  FIELDS TERMINATED BY '\\t'
LOCATION '/warehouse/gmall/ads/ads_user_action/';

2.数据装载

with
tmp_page as
(
    select
        '2022-04-11' dt,
        recent_days,
        sum(if(array_contains(pages,'home'),1,0)) home_count,
        sum(if(array_contains(pages,'good_detail'),1,0)) good_detail_count
    from
    (
        select
            recent_days,
            mid_id,
            collect_set(page_id) pages
        from
        (
            select
                dt,
                mid_id,
                page.page_id
            from dws_visitor_action_daycount lateral view explode(page_stats) tmp as page
            where dt>=date_add('2022-04-11',-29)
            and page.page_id in('home','good_detail')
        )t1 lateral view explode(Array(1,7,30)) tmp as recent_days
        where dt>=date_add('2022-04-11',-recent_days+1)
        group by recent_days,mid_id
    )t2
    group by recent_days
),
tmp_cop as
(
    select
        '2022-04-11' dt,
        recent_days,
        sum(if(cart_count>0,1,0)) cart_count,
        sum(if(order_count>0,1,0)) order_count,
        sum(if(payment_count>0,1,0)) payment_count
    from
    (
        select
            recent_days,
            user_id,
            case
                when recent_days=1 then cart_last_1d_count
                when recent_days=7 then cart_last_7d_count
                when recent_days=30 then cart_last_30d_count
            end cart_count,
            case
                when recent_days=1 then order_last_1d_count
                when recent_days=7 then order_last_7d_count
                when recent_days=30 then order_last_30d_count
            end order_count,
            case
                when recent_days=1 then payment_last_1d_count
                when recent_days=7 then payment_last_7d_count
                when recent_days=30 then payment_last_30d_count
            end payment_count
        from dwt_user_topic lateral view explode(Array(1,7,30)) tmp as recent_days
        where dt='2022-04-11'
    )t1
    group by recent_days
)
insert overwrite table ads_user_action
select * from ads_user_action
union
select
    tmp_page.dt,
    tmp_page.recent_days,
    home_count,
    good_detail_count,
    cart_count,
    order_count,
    payment_count
from tmp_page
join tmp_cop
on tmp_page.recent_days=tmp_cop.recent_days;

3.4 用户留存率

留存分析一般包含新增留存和活跃留存分析。

新增留存分析是分析某天的新增用户中,有多少人有后续的活跃行为。活跃留存分析是分析某天的活跃用户中,有多少人有后续的活跃行为。

留存分析是衡量产品对用户价值高低的重要指标。

此处要求统计新增留存率,新增留存率具体是指留存用户数与新增用户数的比值,例如2022-04-11新增100个用户,1日之后(2022-04-12)这100人中有80个人活跃了,那2022-04-11的1日留存数则为80,2022-04-11的1日留存率则为80%。

要求统计每天的1至7日留存率,如下图所示。

1.建表语句

DROP TABLE IF EXISTS ads_user_retention;
CREATE EXTERNAL TABLE ads_user_retention (
  `dt` STRING COMMENT '统计日期',
  `create_date` STRING COMMENT '用户新增日期',
  `retention_day` BIGINT COMMENT '截至当前日期留存天数',
  `retention_count` BIGINT COMMENT '留存用户数量',
  `new_user_count` BIGINT COMMENT '新增用户数量',
  `retention_rate` DECIMAL(16,2) COMMENT '留存率'
) COMMENT '用户留存率'
ROW FORMAT DELIMITED  FIELDS TERMINATED BY '\\t'
LOCATION '/warehouse/gmall/ads/ads_user_retention/';

2.数据装载

insert overwrite table ads_user_retention
数仓分层

数仓搭建DWS层

数仓初识-理论知识

数仓搭建DWD层

数仓搭建ODS层

数仓搭建DWT层