Pandas中resample方法详解
Posted wangshuang1631
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pandas中resample方法详解相关的知识,希望对你有一定的参考价值。
Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。
方法的格式是:
DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start',kind
=None, loffset=None, limit=None, base=0)
参数详解是:
Parameters: | rule : string
偏移量表示目标字符串或对象转换
axis : int, optional, default 0 closed : ‘right’, ‘left’
哪一个方向的间隔是关闭的
label : ‘right’, ‘left’
Which bin edge label to label bucket with
convention : ‘start’, ‘end’, ‘s’, ‘e’ loffset : timedelta
调整重新取样时间标签
base : int, default 0
频率均匀细分1天,“起源”的聚合的间隔。例如,对于“5分钟”频率,基地可能范围从0到4。默认值为0
|
---|
首先创建一个Series,采样频率为一分钟。
>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64
降低采样频率为三分钟
>>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64
降低采样频率为三分钟,但是每个标签使用right来代替left。请注意,bucket中值的用作标签。
>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64
降低采样频率为三分钟,但是关闭right区间。
>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64
增加采样频率到30秒
>>> series.resample('30S').asfreq()[0:5] #select first 5 rows
2000-01-01 00:00:00 0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2
Freq: 30S, dtype: float64
增加采样频率到30S,使用pad方法填充nan值。
>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
增加采样频率到30S,使用bfill方法填充nan值。
>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
通过apply运行一个自定义函数
>>> def custom_resampler(array_like):
... return np.sum(array_like)+5
>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64
以上是关于Pandas中resample方法详解的主要内容,如果未能解决你的问题,请参考以下文章
pandas resample 重采样
pandas使用resample进行不同粒度下的时间特征重构实战:构建时间维度统计特征
pandas-时间序列重构-resample
pandas 时间序列resample
pandas df.resample('D').sum() 返回 NaN
pandas.DataFrame.resample