matlab 用改进的单纯形法(Modified Simplex Method)求解二次规划问题

Posted 白水baishui

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了matlab 用改进的单纯形法(Modified Simplex Method)求解二次规划问题相关的知识,希望对你有一定的参考价值。

文章目录

1. Wolf方法

这是一个不常用的方法,由wolf实现了matlab代码:Quadratic programming by Wolf’s method

在使用时,应当保证该function与自己计算二次规划问题的文件在同一目录下,并且matlab的“Current Folder”加载在该目录。

在注释中有一个使用样例,需要注意的是样例中的优化问题求解的是最大优化

2. 应用示例

假设要求解最小优化问题:

分析参数:
f ( x 1 , x 2 ) = ( x 1 − 1 ) 2 + ( x 2 − 2.5 ) 2 f(x_1,x_2)=(x_1-1)^2+(x_2-2.5)^2 f(x1,x2)=(x11)2+(x22.5)2展开可得: f ( x 1 , x 2 ) = x 1 2 + x 2 2 − 2 x 1 − 5 x 2 + 7.25 f(x_1,x_2)=x_1^2+x_2^2-2x_1-5x_2+7.25 f(x1,x2)=x12+x222x15x2+7.25则其由最小优化问题改为最大优化问题为: − f ( x 1 , x 2 ) = − x 1 2 − x 2 2 + 2 x 1 + 5 x 2 − 7.25 -f(x_1,x_2)=-x_1^2-x_2^2+2x_1+5x_2-7.25 f(x1,x2)=x12x22+2x1+5x27.25

最大优化问题的二次型矩阵 D D D为: D = [ − 1 0 0 − 1 ] D=\\beginbmatrix -1 & 0 \\\\ 0 & -1 \\\\ \\endbmatrix D=[1001]

线性项系数 l l l 为: l = [ 2 5 ] l=\\beginbmatrix 2 \\\\ 5 \\\\ \\endbmatrix l=[25]

又由约束条件(约束条件无需更改) A x ⩽ b Ax\\leqslant b Axb − x 1 + 2 x 2 ⩽ 2 x 1 + x 2 ⩽ 6 x 1 + x 2 ⩽ 2 \\beginaligned -x_1+2x_2 & \\leqslant 2 \\\\ x_1+x_2 & \\leqslant 6 \\\\ x_1+x_2 & \\leqslant 2 \\\\ \\endaligned x1+2x2x1+x2x1+x2262
可得右约束列 b b b为: b = [ 2 6 2 ] b=\\beginbmatrix 2 \\\\ 6 \\\\ 2 \\\\ \\endbmatrix b=262左约束矩阵 A A A为: A = [ − 1 2 1 2 1 2 ] A=\\beginbmatrix -1 & 2 \\\\ 1 & 2 \\\\ 1 & 2 \\\\ \\endbmatrix A=111222

A A A b b b的三个约束条件 i n q inq inq 均为小于等于: i n q = [ − 1 , − 1 , − 1 ] inq=[-1,-1,-1] inq=[1,1,1]
那么可以编写如下matlab代码:

D = [-1 0; 0 -1] % -x1^2 - x2^2 + 2x1 + 5x2 - 7.25 -> [-1 0; 0 -1]
l=[2; 5] %  + 2x1 + 5x2 ->[2 5]
b=[2; 6; 2] % s.t. b
Mat=[-1, 2; 1,2; 1, 2] % s.t. A
inq=[-1, -1, -1] % <=
wolf(D,l,b,Mat,inq);

运行可得最优化结果:

ans=[0.2000;0.9000]

即: x 1 = 0.2000 ; x 2 = 0.9000 x_1=0.2000;x_2=0.9000 x1=0.2000;x2=0.9000

3. 可输出每次迭代的Wolf方法

为了方便观察每次的迭代值,我对Wolf方法进行了改编,在while循环里加入了代码(仅此一处):

if iter==1
    opt = 1;
    break;
end

在优化过程中,令iter分别等于1、2、3、…,即可得到第1、2、3、…次的迭代值。

改编后的Wolf方法如下,新加入的代码在wolf方法中已经被注释,要使用请取消%...%注释,不取消注释则与原Wolf方法无异:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The function wolf solves an QPP using Wolf or restricted entry simplex
% method.
%
% Input:-   1)D : The Hessian of the objective function. It is a required
%                 parameter.
%           2)l : The (column) vector of coefficient of linear terms in the
%                 objective function. It is a required parameter.
%           2)b : The (column) vector containing right hand side constant of
%               the constraints. It is a required parameter.
%           3)Mat : The coefficient matrix of the left hand side of the
%               constraints. it is a required parameter.
%           4)inq : A (row) vector indicating the type of constraints as 1
%               for >=, 0 for = and -1 for <= constraints. If inq is not
%               supplied then it is by default taken that all constraints
%               are of <= type. It is an optional parameter.
%           5)minimize : This parameter indicates whether the objective
%               function is to be minimized. minimized = 1 indicates
%               a mimization problem and minimization = 0 stands for a
%               maximization problem. By default it is taken as 0. It is an
%               optional parameter.
%
% Example : max     z=2x1+3x2-3x1^2+2x1x2-2x2^2
%           s.t.     x1+x2  >= 1
%               	3x1+4x2 <= 3
%                    x1, x2 >= 0.
% Solution : D=[-3 1;1 -2];l=[2;3];b=[1;3];Mat=[1 1;3 4];inq=[1 -1].
% After supplying these inputs call wolf(D,l,b,Mat,inq).
%
% For theory of Wolf method and QPP one may see "Numerical
% Optimization with Applications, Chandra S., Jayadeva, Mehra A., Alpha
% Science Internatinal Ltd, 2009."
%
% This code has been written by Bapi Chatterjee as course assignment in the
% course Numerical Optimization at Indian Institute of Technology Delhi,
% New Delhi, India. The author shall be thankful for suggesting any
% error/improvment at bhaskerchatterjee@gmail.com.
%matlab 用单纯形法求解二次规划问题

matlab 线性规划 单纯形法

matlab 线性规划 单纯形法

线性规划中的单纯形法与内点法(原理步骤以及matlab实现)

运筹学笔记 对偶理论与灵敏度分析

线性规划中的单纯形法与内点法(原理步骤以及matlab实现)