ThreadLocal
Posted dingwen_blog
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ThreadLocal相关的知识,希望对你有一定的参考价值。
文章目录
ThreadLocal
参考:
- https://blog.csdn.net/weixin_44050144/article/details/113061884
- 哔哩哔哩黑马
ThreadLocal
视频
1. 简介
[!NOTE]
从Java官方文档中的描述:ThreadLocal类用来提供线程内部的局部变量。这种变量在多线程环境下访问(通过get和set方法访问)时能保证各个线程的变量相对独立于其他线程内的变量。ThreadLocal实例通常来说都是private static类型的,用于关联线程和线程上下文。
我们可以得知 ThreadLocal 的作用是:提供线程内的局部变量,不同的线程之间不会相互干扰,这种变量在线程的生命周期内起作用,减少同一个线程内多个函数或组件之间一些公共变量传递的复杂度。
- 线程并发: 在多线程并发的场景下
- 传递数据: 我们可以通过ThreadLocal在同一线程,不同组件中传递公共变量
- 线程隔离: 每个线程的变量都是独立的,不会互相影响
2. 常用方法
方法声明 | 描述 |
---|---|
ThreadLocal() | 创建ThreadLocal对象 |
public void set( T value) | 设置当前线程绑定的局部变量 |
public T get() | 获取当前线程绑定的局部变量 |
public void remove() | 移除当前线程绑定的局部变量 |
3. 基本使用
3.1 未使用案例
public class MyDemo
private String content;
private String getContent()
return content;
private void setContent(String content)
this.content = content;
public static void main(String[] args)
MyDemo demo = new MyDemo();
for (int i = 0; i < 5; i++)
Thread thread = new Thread(new Runnable()
@Override
public void run()
demo.setContent(Thread.currentThread().getName() + "的数据");
System.out.println("-----------------------");
System.out.println(Thread.currentThread().getName() + "--->" + demo.getContent());
);
thread.setName("线程" + i);
thread.start();
[!NOTE]
从结果可以看出多个线程在访问同一个变量的时候出现的异常,线程间的数据没有隔离。
3.2 使用ThreadLocal
public class MyDemo1
private static ThreadLocal<String> tl = new ThreadLocal<>();
private String content;
private String getContent()
return tl.get();
private void setContent(String content)
tl.set(content);
public static void main(String[] args)
MyDemo demo = new MyDemo();
for (int i = 0; i < 5; i++)
Thread thread = new Thread(new Runnable()
@Override
public void run()
demo.setContent(Thread.currentThread().getName() + "的数据");
System.out.println("-----------------------");
System.out.println(Thread.currentThread().getName() + "--->" + demo.getContent());
);
thread.setName("线程" + i);
thread.start();
[!NOTE]
使用
ThreadLocal
解决了问题。
3.3 synchronized同步方式
public class Demo02
private String content;
public String getContent()
return content;
public void setContent(String content)
this.content = content;
public static void main(String[] args)
Demo02 demo02 = new Demo02();
for (int i = 0; i < 5; i++)
Thread t = new Thread()
@Override
public void run()
synchronized (Demo02.class)
demo02.setContent(Thread.currentThread().getName() + "的数据");
System.out.println("-------------------------------------");
String content = demo02.getContent();
System.out.println(Thread.currentThread().getName() + "--->" + content);
;
t.setName("线程" + i);
t.start();
[!NOTE]
加锁也解决了线程安全问题,频繁的加锁释放锁造成了性能损失。
3.4 ThreadLocal与synchronized的区别
synchronized | ThreadLocal | |
---|---|---|
原理 | 同步机制采用’以时间换空间’的方式, 只提供了一份变量,让不同的线程排队访问 | ThreadLocal采用’以空间换时间’的方式, 为每一个线程都提供了一份变量的副本,从而实现同时访问而相不干扰 |
侧重点 | 多个线程之间访问资源的同步 | 多线程中让每个线程之间的数据相互隔离 |
[!NOTE]
虽然使用ThreadLocal和synchronized都能解决问题,但是使用ThreadLocal更为合适,因为这样可以使程序拥有更高的并发性。
4. 内部结构
4.1 设计说明
[!NOTE]
每个
Thread
维护一个ThreadLocalMap
,这个Map的key
是ThreadLocal
实例本身,value
才是真正要存储的值Object
。
4.2 设计优势
[!NOTE]
- 这样设计之后每个Map存储的Entry数量就会变少。因为之前的存储数量由Thread的数量决定,现在是由ThreadLocal的数量决定。在实际运用当中,往往ThreadLocal的数量要少于Thread的数量
- 当Thread销毁之后,对应的ThreadLocalMap也会随之销毁,能减少内存的使用
5. 核心方法源码分析
5.1 set()
/**
* 设置当前线程对应的ThreadLocal的值
*
* @param value 将要保存在当前线程对应的ThreadLocal的值
*/
public void set(T value)
// 获取当前线程对象
Thread t = Thread.currentThread();
// 获取此线程对象中维护的ThreadLocalMap对象
ThreadLocalMap map = getMap(t);
// 判断map是否存在
if (map != null)
// 存在则调用map.set设置此实体entry
map.set(this, value);
else
// 1)当前线程Thread 不存在ThreadLocalMap对象
// 2)则调用createMap进行ThreadLocalMap对象的初始化
// 3)并将 t(当前线程)和value(t对应的值)作为第一个entry存放至ThreadLocalMap中
createMap(t, value);
/**
* 获取当前线程Thread对应维护的ThreadLocalMap
*
* @param t the current thread 当前线程
* @return the map 对应维护的ThreadLocalMap
*/
ThreadLocalMap getMap(Thread t)
return t.threadLocals;
/**
*创建当前线程Thread对应维护的ThreadLocalMap
*
* @param t 当前线程
* @param firstValue 存放到map中第一个entry的值
*/
void createMap(Thread t, T firstValue)
//这里的this是调用此方法的threadLocal
t.threadLocals = new ThreadLocalMap(this, firstValue);
[!TTP]
- 首先获取当前线程,并根据当前线程获取一个Map
- 如果获取的Map不为空,则将参数设置到Map中(当前ThreadLocal的引用作为key)
- 如果Map为空,则给该线程创建 Map,并设置初始值
5.2 get ()
/**
* 返回当前线程中保存ThreadLocal的值
* 如果当前线程没有此ThreadLocal变量,
* 则它会通过调用@link #initialValue 方法进行初始化值
*
* @return 返回当前线程对应此ThreadLocal的值
*/
public T get()
// 获取当前线程对象
Thread t = Thread.currentThread();
// 获取此线程对象中维护的ThreadLocalMap对象
ThreadLocalMap map = getMap(t);
// 如果此map存在
if (map != null)
// 以当前的ThreadLocal 为 key,调用getEntry获取对应的存储实体e
ThreadLocalMap.Entry e = map.getEntry(this);
// 对e进行判空
if (e != null)
@SuppressWarnings("unchecked")
// 获取存储实体 e 对应的 value值
// 即为我们想要的当前线程对应此ThreadLocal的值
T result = (T)e.value;
return result;
/*
初始化 : 有两种情况有执行当前代码
第一种情况: map不存在,表示此线程没有维护的ThreadLocalMap对象
第二种情况: map存在, 但是没有与当前ThreadLocal关联的entry
*/
return setInitialValue();
/**
* 初始化
*
* @return the initial value 初始化后的值
*/
private T setInitialValue()
// 调用initialValue获取初始化的值
// 此方法可以被子类重写, 如果不重写默认返回null
T value = initialValue();
// 获取当前线程对象
Thread t = Thread.currentThread();
// 获取此线程对象中维护的ThreadLocalMap对象
ThreadLocalMap map = getMap(t);
// 判断map是否存在
if (map != null)
// 存在则调用map.set设置此实体entry
map.set(this, value);
else
// 1)当前线程Thread 不存在ThreadLocalMap对象
// 2)则调用createMap进行ThreadLocalMap对象的初始化
// 3)并将 t(当前线程)和value(t对应的值)作为第一个entry存放至ThreadLocalMap中
createMap(t, value);
// 返回设置的值value
return value;
[!NOTE]
先获取当前线程的 ThreadLocalMap 变量,如果存在则返回值,不存在则创建并返回初始值。
5.3 remove()
/**
* 删除当前线程中保存的ThreadLocal对应的实体entry
*/
public void remove()
// 获取当前线程对象中维护的ThreadLocalMap对象
ThreadLocalMap m = getMap(Thread.currentThread());
// 如果此map存在
if (m != null)
// 存在则调用map.remove
// 以当前ThreadLocal为key删除对应的实体entry
m.remove(this);
[!NOTE]
- 首先获取当前线程,并根据当前线程获取一个Map
- 如果获取的Map不为空,则移除当前ThreadLocal对象对应的entry
5.4 initialValue()
/**
* 返回当前线程对应的ThreadLocal的初始值
* 此方法的第一次调用发生在,当线程通过get方法访问此线程的ThreadLocal值时
* 除非线程先调用了set方法,在这种情况下,initialValue 才不会被这个线程调用。
* 通常情况下,每个线程最多调用一次这个方法。
*
* <p>这个方法仅仅简单的返回null @code null;
* 如果程序员想ThreadLocal线程局部变量有一个除null以外的初始值,
* 必须通过子类继承@code ThreadLocal 的方式去重写此方法
* 通常, 可以通过匿名内部类的方式实现
*
* @return 当前ThreadLocal的初始值
*/
protected T initialValue()
return null;
6.内存泄露分析
6.1 强引用
[!NOTE]
强引用(“Strong” Reference),就是我们最常见的普通对象引用,只要还有强引用指向一个对象,就能表明对象还“活着”,垃圾回收器就不会回收这种对象。
6.2 弱引用
[!NOTE]
弱引用(WeakReference),垃圾回收器一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。
6.3 ThreadLocalMap中的key使用强引用分析
[!NOTE]
假设在业务代码中使用完ThreadLocal ,threadLocal Ref被回收了。 但是因为threadLocalMap的Entry强引用了threadLocal,造成threadLocal无法被回收。 在没有手动删除这个Entry以及CurrentThread依然运行的前提下,始终有强引用链 threadRef->currentThread->threadLocalMap->entry,Entry就不会被回收(Entry中包括了ThreadLocal实例和value),导致Entry内存泄漏。也就是说,ThreadLocalMap中的key使用了强引用, 是无法完全避免内存泄漏的。
6.4 ThreadLocalMap中的key使用强引用分析
[!NOTE]
同样假设在业务代码中使用完ThreadLocal ,threadLocal Ref被回收了。 由于ThreadLocalMap只持有ThreadLocal的弱引用,没有任何强引用指向
threadlocal
实例, 所以threadloca
l就可以顺利被gc
回收,此时Entry中的key=null。但是在没有手动删除这个Entry以及CurrentThread依然运行的前提下,也存在有强引用链 threadRef->currentThread->threadLocalMap->entry -> value ,value不会被回收, 而这块value永远不会被访问到了,导致value内存泄漏。 也就是说,ThreadLocalMap中的key使用了弱引用, 也有可能内存泄漏。
6.5 避免内存泄露
使用完毕调用
remove()
方法弱引用情况下:
在ThreadLocalMap中的set/getEntry方法中,会对key为null(也即是ThreadLocal为null)进行判断,如果为null的话,那么是会对value置为null的。
以上是关于ThreadLocal的主要内容,如果未能解决你的问题,请参考以下文章