GC垃圾回收(3)- 三色标记算法

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了GC垃圾回收(3)- 三色标记算法相关的知识,希望对你有一定的参考价值。

参考技术A

CMS过程在上篇文章 GC垃圾回收(2) 中已经写过。
它分为四个阶段:

其中 并发标记 阶段会有漏标的问题,为解决这个问题,采用了 "三色标记算法"

G1 GC(Garbage First Garbage Collector)是一种服务端应用使用的垃圾收集器,目标是用在 多核、大内存 的机器上,它在大多数情况下可以实现指定的GC暂停时间,同时还能保持较高的吞吐量。它的吞吐量相较PS+PO降低了大概10%~15%,但是大大降低了响应时间,大概200ms的程度

G1内存模型如下:

G1相较之前其它的垃圾回收器,对模型进行了改变,不再进行物理分代,采用逻辑分代。

它不再将连续内存分为Eden区和Old区,而是将内存分为一个个的Region。一块Region(分区)在逻辑上依然分代,分为四种:Eden,Old,Survivor,Humongous(大对象,跨多个连续的Region)。

它的每个分区都可能是年轻代也可能是老年代,但是在同一时刻只能属于某个代。

年轻代、幸存区、老年代这些概念还存在,成为了逻辑上的概念,这样方便复用之前分代框架的逻辑。在物理上不需要连续,这带来了额外的好处——有的分区内垃圾对象特别多,有的分区内垃圾对象很少,G1会优先回收垃圾对象特别多的分区,这样可以花费较少的时间来回收这些分区的垃圾,这也就是G1名字的由来,即首先回收垃圾最多的分区。

新生代其实并不适用于这种算法,依然是在新生代满了的时候,对整个新生代进行回收——整个新生代中的对象,要么被回收、要么晋升,至于新生代也采取分区机制的原因,则是因为这样跟老年代的策略统一,方便调整代的大小。

G1还是一种带压缩的收集器,在回收老年代的分区时,是将存活的对象从一个分区拷贝到另一个可用分区,这个拷贝的过程就实现了局部的压缩。每个分区的大小从1M到32M不等,但都是2的幂次方。

特点:

G1与CMS在并发收集时的算法没太大区别,用的是 三色标记 算法。但ZGC和Shenandoah使用的是 颜色指针 Colored Pointers。

主要用于分代模型中帮助垃圾回收。

为什么需要 card table ?
寻找存活对象并不是一件容易的事。从一个GC root对象寻找,可能被Old区对象引用,这个Old区对象又被Eden区对象引用,那么判断Eden区对象是否存活就需要遍历整个Old区存活对象看是否被Old区对象引用。这样的话每进行一次YGC就要扫描整个Old区。

所以JVM内部,将内存区域分为一个个的card,对象存在一个个的card里。当老年代某个card中的对象指向了年轻代,就会将这个card标记为 Dirty 。这么多card具体哪个是 Dirty的,用位图BitMap来代表(如0110010010,1表示Dirty),这就是Card Table。

Card Table :由于做YGC时,需要扫描整个Old区,效率非常低,所以JVM设计了Card Table, 如果一个Old区Card Table中有对象指向Y区,就将它设为Dirty,下次扫描时,只需要扫描Dirty Card。 在结构上,Card Table用BitMap来实现。

RSet会占用一定的空间,所以ZGC又做了改进,不使用RSet,用颜色指针来标记。

Rset与赋值的效率:

5% ~ 60%(新生代)

G1能跟踪STW停顿时间,根据停顿时间动态调整新生代(Y区)比例

超过单个region的 50% 就是一个大对象,也可跨越多个region。

注意: G1也是存在FGC的,并且一定会被触发。当对象分配不下是会产生FGC。

回收时不分新生代还是老年代什么的,region满了就回收。

MixedGC过程:

跟CMS非常像,MixedGC最后是筛选回收,多了个筛选步骤。筛选就是找出垃圾最多的region。筛选后将存活对象复制到其他region,再将之前的region清空。

CMS和G1在并发标记时使用的是同一个算法: 三色标记法 ,使用白灰黑三种颜色标记对象。白色是未标记;灰色自身被标记,引用的对象未标记;黑色自身与引用对象都已标记。

在remark过程中,黑色指向了白色,如果不对黑色重新扫描,则会漏标。会把白色D对象当作没有新引用指向从而回收掉。

并发标记过程中,Mutator删除了所有从灰色到白色的引用,会产生漏标。此时白色对象应该被回收

产生漏标问题的条件有两个:
1.黑色对象指向了白色对象
2.灰色对象指向白色对象的引用消失

所以要解决漏标问题,打破两个条件之一即可:

为什么G1采用SATB而不用incremental update?
因为采用incremental update把黑色重新标记为灰色后,之前扫描过的还要再扫描一遍,效率太低。
G1有RSet与SATB相配合。Card Table里记录了RSet,RSet里记录了其他对象指向自己的引用,这样就不需要再扫描其他区域,只要扫描RSet就可以了。
也就是说 灰色-->白色 引用消失时,如果没有 黑色-->白色,引用会被push到堆栈,下次扫描时拿到这个引用,由于有RSet的存在,不需要扫描整个堆去查找指向白色的引用,效率比较高。SATB配合RSet浑然天成。

七天入门Go语言 GC垃圾回收三色标记 | 第七天

GC

GC全称Garbage Collection

目前主流的垃圾回收算法有两类,分别是追踪式垃圾回收算法(Tracing garbage collection)和引用计数法( Reference counting )。
三色标记法是属于追踪式垃圾回收算法的一种。

追踪式算法的核心思想是判断一个对象是否可达,因为一旦这个对象不可达就可以立刻被 GC 回收了。

那么如何判断一个对象是否可达呢?
分为两步:

  • 第一步找出所有的全局变量和当前函数栈里的变量,标记为可达。
  • 第二步,从已经标记的数据开始,进一步标记它们可访问的变量,周而复始,这一过程也叫传递闭包

在go推出三色标记法之前,go所使用的gc算法叫Mark-And-Sweep(标记清扫)

这个算法就是严格按照追踪式算法的思路来实现的。

  1. 先设置一个标志位来记录对象是否被使用,最开始所有的标记位都是 0。
  2. 如果发现对象是可达的就会置为1,一步步下去就会呈现一个类似树状的结果。
  3. 等标记的步骤完成后,会将没有被标记的对象统一清理,再次把所有的标记位设置成 0, 以便下次进行清理。

这个算法最大的问题是 GC 执行期间需要把整个程序完全暂停,不能异步进行GC操作。因为在不同阶段标记清扫法的标志位 0 和 1 有不同的含义,那么新增的对象无论标记为什么都有可能意外删除这个对象。对实时性要求高的系统来说,这种需要长时间挂起的标记清扫法是不可接受的。所以就需要一个算法来解决 GC 运行时程序长时间挂起的问题,那就三色标记法。

三色标记法

三色标记法是传统 Mark-Sweep 的一个改进,它是一个并发的 GC 算法。on-the-fly

原理如下

  • 整个进程空间里申请每个对象占据的内存可以视为一个图, 初始状态下每个内存对象都是白色标记。
  • stop the world,将扫描任务作为多个并发的goroutine立即入队给调度器,进而被CPU处理,第一轮先扫描所有可达的内存对象,标记为灰色放入队列
  • 第二轮可以恢复start the world,将第一步队列中的对象引用的对象置为灰色加入队列,一个对象引用的所有对象都置灰并加入队列后,这个对象才能置为黑色并从队列之中取出。循环往复,最后队列为空时,整个图剩下的白色内存空间即不可到达的对象,即没有被引用的对象;
  • 第三轮再次stop the world,将第二轮过程中新增对象申请的内存进行标记(灰色),这里使用了writebarrier(写屏障)去记录这些内存的身份;

这个算法可以实现 on-the-fly,也就是在程序执行的同时进行收集,并不需要暂停整个程序。

简化步骤如下:

1、首先创建三个集合:白、灰、黑。


2、将所有对象放入白色集合中。

3、然后从根节点开始遍历所有对象(注意这里并不递归遍历),把遍历到的对象从白色集合放入灰色集合。

因为root set 指向了A、F,所以从根结点开始遍历的是A、F,所以是把A、F放到灰色集合中。

4、之后遍历灰色集合,将灰色对象引用的对象白色集合放入灰色集合,之后将此灰色对象放入黑色集合
我们可以发现这个A指向了B,C,D所以也就是把BCD放到灰色中,把A放到黑色中,而F没有指任何的对象,所以直接放到黑色中。


5、重复 4 直到灰色中无任何对象

因为D指向了A所以D也放到了黑色中,而B和C能放到黑色集合中的道理和F一样,已经没有了可指向的对象了。

6、通过write-barrier检测对象有无变化,重复以上操作

由于这个EGH并没有和RootSet有直接或是间接的关系,所以就会被清除。


7、收集所有白色对象(垃圾)

所以我们可以看出这里的情况,只要是和root set根集合直接相关的对象或是间接相关的对象都不会被清楚。只有不相关的才会被回收。

参考文档:


一张图讲解GC
关于write-barrier写屏障

最后

小生凡一,期待你的关注。

以上是关于GC垃圾回收(3)- 三色标记算法的主要内容,如果未能解决你的问题,请参考以下文章

七天入门Go语言 GC垃圾回收三色标记 | 第七天

CMS垃圾回收器 & 三色标记算法

CMS垃圾回收器 & 三色标记算法

CMS垃圾回收器 & 三色标记算法

三色标记法与垃圾回收器(CMS、G1)

你要的JVM垃圾回收器全在这了