2021第十二届蓝桥杯省赛JAVA B组 题目+答案(复现赛)

Posted ZSYL

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2021第十二届蓝桥杯省赛JAVA B组 题目+答案(复现赛)相关的知识,希望对你有一定的参考价值。

2021第十二届蓝桥杯省赛JAVA B组 题目+答案(复现赛)

A:ASC

【问题描述】
已知大写字母 A 的 ASCII 码为 65,请问大写字母 L 的 ASCII 码是多少?

【答案】
76

签到题(*^▽^*)

public class Main 
    public static void main(String[] args) 
        System.out.println((int) 'L');
    

B:卡片

【问题描述】
​ 小蓝有很多数字卡片,每张卡片上都是数字 09。
​ 小蓝准备用这些卡片来拼一些数,他想从 1 开始拼出正整数,每拼一个,
就保存起来,卡片就不能用来拼其它数了。
​ 小蓝想知道自己能从 1 拼到多少。
​ 例如,当小蓝有 30 张卡片,其中 093 张,则小蓝可以拼出 110,但是拼 11 时卡片 1 已经只有一张了,不够拼出 11。
​ 现在小蓝手里有 09 的卡片各 2021 张,共 20210 张,请问小蓝可以从 1 拼到多少?

【答案】
3181

用一个长度为 10 的数组存储 0 到 9 剩余的卡片,每一个数字分别对每一位的卡片减1,如果某一卡片剩余为 0 就代表不能拼出当前卡片,然后输出上一个卡片就好了

分析:从1开始遍历,判断遍历到的数可否用目前的卡片拼出来,可以的话,继续遍历,否则输出答案(答案为现在遍历到的数减1)。

Cpp

#include<iostream>
using namespace std;
#include<string.h>
#include<algorithm>
typedef long long int ll;

int arr[10];

bool check (ll x)

	ll s;
	while (x > 0) 
		arr[x % 10]--;
		if (arr[x % 10] < 0)
			return 0;
		x /= 10;
	
	return 1;


int main () 

	fill(arr, arr+10, 2021);
	
	for (int i = 1; i <= 5000; i++) 
		if (!check(i)) 
			cout << i-1 << endl;
			break;
		
	

Java

import java.util.Arrays;

public class Main 
    public static void main(String[] args) 
        int[] chs = new int[10];
        Arrays.fill(chs, 2021);

        for (int i = 1; ; i++) 
            for (char c : String.valueOf(i).toCharArray()) 
                if (chs[c - '0'] == 0) 
                    System.out.println(i-1);
                    return;
                
                chs[c - '0']--;
            
        
    

大佬API玩得很⑥!

C:直线

【问题描述】
​ 在平面直角坐标系中,两点可以确定一条直线。如果有多点在一条直线上,那么这些点中任意两点确定的直线是同一条。
​ 给定平面上 2 × 3个整点 ( x , y )0 ≤ x < 2 , 0 ≤ y < 3 , x ∈ Z , y ∈ Z 即横坐标是 01 (包含 01) 之间的整数、纵坐标是 02 (包含 02) 之间的整数的点。这些点一共确定了 11 条不同的直线。
​ 给定平面上 20 × 21个整点 ( x , y )0 ≤ x < 20 , 0 ≤ y < 21 , x ∈ Z , y ∈ Z ,即横坐标是 019(包含 019) 之间的整数、纵坐标是 020(包含 020) 之间的整数的点。请问这些点一共确定了多少条不同的直线。

【答案】
40257

思路是枚举每一个起点和终点,然后用 y = k x + b y=kx+b 计算出斜率 k 和 b,然后去重。不过 k还有可能是小数,用double 处理,精度爆炸了!最后的实现方法是用 String 表示分数,Set去重,然后还要做些细节的处理。

import java.util.*;

class Line 
    String k;
    String b;

    @Override
    public boolean equals(Object o) 
        Line line = (Line) o;
        return Objects.equals(k, line.k) && Objects.equals(b, line.b);
    

    @Override
    public int hashCode() 
        int result = k != null ? k.hashCode() : 0;
        result = 31 * result + (b != null ? b.hashCode() : 0);
        return result;
    


class Point 
    int x;
    int y;


public class Main 
    static int gcd(int a, int b) 
        return b == 0 ? a : gcd(b, a % b);
    

    public static void main(String[] args) 
        Set<Line> lines = new HashSet<>();
        List<Point> points = new ArrayList<>();
        for (int i = 0; i < 20; i++) 
            for (int j = 0; j < 21; j++) 
                Point p = new Point();
                p.x = i;
                p.y = j;
                points.add(p);
            
        

        for (int i = 0; i < points.size(); i++) 
            Point p1 = points.get(i);
            for (int j = 0; j < points.size(); j++) 
                if (i != j) 
                    Point p2 = points.get(j);
                    Line l = new Line();

                    if (p2.x == p1.x) 
                        l.b = String.valueOf(p1.x);
                     else 
                        int kt = p2.y - p1.y;
                        int kd = p2.x - p1.x;
                        int gcd = gcd(kt, kd);
                        kt /= gcd;
                        kd /= gcd;

                        if (kt == 0) 
                            l.k = String.valueOf(0);
                            l.b = String.valueOf(p1.y);
                            lines.add(l);
                            continue;
                        

                        if ((kt < 0) ^ (kd < 0)) 
                            l.k = -Math.abs(kt) + "/" + Math.abs(kd);
                         else 
                            l.k = Math.abs(kt) + "/" + Math.abs(kd);
                        

                        kt = p1.y * kd - kt * p1.x;
                        gcd = gcd(kt, kd);
                        kt /= gcd;
                        kd /= gcd;

                        if (kt == 0) 
                            l.b = "0";
                            lines.add(l);
                            continue;
                        
                        if ((kt < 0) ^ (kd < 0)) 
                            l.b = -Math.abs(kt) + "/" + Math.abs(kd);
                         else 
                            l.b = Math.abs(kt) + "/" + Math.abs(kd);
                        
                    

                    lines.add(l);
                
            
        

        System.out.println(lines.size());
    

思路2:

分析:枚举两个不同的点,两点确定一条直线。具体的,直线由y=kx+b表示,看有多少种(k,b)的组合。但由于k和b都是浮点数,Java中是不能够通过==直接判断两个浮点数是否相等的,为此我们用"(b2 - b1) / (a2 - a1) (b1 * (a2 - a1) - a1 * (b2 - b1) / (a2 - a1))"字符串的形式表示一根直线。然后通过Set集合去重,自定义的类需要通过重写equals()方法和hashCode()方法才能被Set集合去重。

import java.util.*;

public class Main 
	public static void main(String[] args) 
		Set<String> ans = new HashSet<String>();
		for(int a1 = 0; a1 <= 19; a1++) 
			for(int b1 = 0; b1 <= 20; b1++) 
				for(int a2 = 0; a2 <= 19; a2++) 
					for(int b2 = 0; b2 <= 20; b2++) 
                        // 斜率不存在和斜率为0的特殊情况,我们可以手动计算无需特殊判断
						if(a1 == a2 || b1 == b2) 
							continue;
						
                        // 以分子/分母的形式表达斜率k和截距b时,分子和分母需要是最简的形式
						StringBuilder sb = new StringBuilder();
						int up = b2 - b1;
						int down = a2 - a1;
						int r = gcd(up, down);
						sb.append(up / r + " ");
						sb.append(down / r + " ");
						up = b1 * down - a1 * up;
						r = gcd(up, down);
						sb.append(up / r + " ");
						sb.append(down / r);
						ans.add(sb.toString());
					
				
			
		
        // 斜率不存在的直线20根,斜率为0的直线21根
		System.out.println(ans.size() + 20 + 21);
	
	static int gcd(int a, int b) 
		return b == 0 ? a : gcd(b, a % b);
	

D:货物摆放

【问题描述】
​小蓝有一个超大的仓库,可以摆放很多货物。
​ 现在,小蓝有 n 箱货物要摆放在仓库,每箱货物都是规则的正方体。小蓝
规定了长、宽、高三个互相垂直的方向,每箱货物的边都必须严格平行于长、
宽、高。
​ 小蓝希望所有的货物最终摆成一个大的立方体。即在长、宽、高的方向上
分别堆 L、W、H 的货物,满足 n = L × W × H。
​ 给定 n,请问有多少种堆放货物的方案满足要求。
​ 例如,当 n = 4 时,有以下 6 种方案:1×1×41×2×21×4×12×1×22×2×14×1×1。
​ 请问,当 n = 2021041820210418 (注意有 16 位数字)时,总共有多少种方案?


【答案】
2430

遍历这个大数的所有因数,然后对这些因数进行全排序,找到所有三个相乘为大数的排序,要注意的一点是得对大数取个平方根,加快速度。

枚举2021041820210418的约数即可,对约数进行多重循环枚举,对枚举出来的三个数字进行全排列。即可得出答案。

import java.util.ArrayList;
import java.util.Deque;
import java.util.LinkedList;
import java.util.List;
import java.util.stream.Collectors;

public class Main 
    static Deque<Long> temp = new LinkedList<>();
    static List<Long> yn = new ArrayList<>();
    static long count = 0;
    static long n = 2021041820210418L;

    public static void main(String[] args) 
        for (long i = 1, end = (long) Math.sqrt(n); i <= end; i++) 
            if (n % i == 0) 
                yn.add(i);
                yn.add(n / i);
            
        
		
        // 去重
        yn = yn.stream().distinct().collect(Collectors.toList());
        dfs(1);

        System.out.println(count);
    

    static void dfs(long now) 
        if (temp.size() == 3) 
            if (now == n) 
                count++;
            
            return;
        

        for (int i = 0; i < yn.size(); i++) 
            temp.addLast(yn.get(i));
            dfs(now * yn.get(i));
            temp.removeLast();
        
    

全排列及去重代码值得学习!

思路2

分析:给出一个数n,求多少个三元组(L,W,H)使得L x W x H等于n。同时三元组是考虑顺序的,L,W,H是n的因数,即n % L == 0 && n % W == 0 && n % H == 0,为此,我们可以先将n的所有因数求出来,然后三重循环遍历L,W,H,若它们相乘等于n,则找到了一种方案。(暴力)

import java.util.*;

public class Main 
    public static void main(String[] args) 
      // 常数默认值为int,告诉编译器它是long型常量
      long n = 2021041820210418l;
      int ans = 0;
      List<Long> l = new ArrayList<>();
      for(long i = 1; i <= Math.sqrt(n); i++)
        if(n % i == 0)
          l.add(i);
          if(i != n / i)  // 实现上面的去重操作
            l.add(n / i);
          
        
      
      for(int i = 0; i < l.size(); i++)
        for(int j = 0; j < l.size(); j++)
          if2021第十二届蓝桥杯省赛C/C++大学B组正式赛题解

2021第十二届蓝桥杯省赛C/C++大学B组正式赛题解

第十二届蓝桥杯省赛第二场C++B组 真题题解(详细讲解+代码分析)看这篇就够了~~~

2021年软件类第十二届蓝桥杯 省赛 python组 F-J题解

第十二届蓝桥杯省赛第二场 C/C++ B组 编程题与详解

第十二届蓝桥杯省赛B组 做题记录(python)