01背包/完全背包-leetcode题目总结
Posted BJUT赵亮
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了01背包/完全背包-leetcode题目总结相关的知识,希望对你有一定的参考价值。
本文记录了在学习leetcode中有关01背包/完全背包的相关问题,如果有同学在做相关内容,可以邮件(zhaoliang19960421@outlook.com)和微信(BestCoder_BestLife)和我沟通联系
在学习的过程中,学习参考了以下文档,在此表示感谢:
https://leetcode-cn.com/circle/article/lUki6J/
https://leetcode-cn.com/circle/article/KPsfIC/
leetcode相关题目
416. 分割等和子集
class Solution:
def canPartition(self, nums: List[int]) -> bool:
n = len(nums)
if n<2 or sum(nums)%2==1:
return False
total = sum(nums)
maxNum = max(nums)
target = total // 2
if maxNum > target:
return False
# 2维
dp = [[False] * (target + 1) for _ in range(n)]
for i in range(n):
dp[i][0] = True # 一个物品都不选时,一定可以满足容量为0
dp[0][nums[0]] = True #
for i in range(1, n):
num = nums[i]
for j in range(1, target + 1):
if j >= num:
dp[i][j] = dp[i - 1][j] or dp[i - 1][j - num]
else:
dp[i][j] = dp[i - 1][j]
return dp[n - 1][target]
# 1维
dp = [False for i in range(target+1)]
dp[nums[0]] = True
for i in range(1,n):
for j in range(target,0,-1):
if j >= nums[i]:
dp[j] = dp[j-nums[i]] or dp[j]
return dp[target]
494. 目标和
class Solution:
def findTargetSumWays(self, nums: List[int], target: int) -> int:
sums = sum(nums)
if sums < abs(target) or (sums + target) % 2:
return 0
target = (sums + target) // 2
n = len(nums)
# dp = [[0] * (target + 1) for _ in range(n + 1)]
# for i in range(n + 1):
# dp[i][0] = 1
# for i in range(1, n + 1):
# for j in range(target + 1):
# num = nums[i - 1]
# if j < num:
# dp[i][j] = dp[i - 1][j]
# else:
# dp[i][j] = dp[i - 1][j] + dp[i - 1][j - num]
# return dp[-1][-1]
dp = [0]*(target+1)
dp[0] = 1
for i in range(n):
for j in range(target,-1,-1):
if j >= nums[i]:
dp[j] = dp[j] + dp[j-nums[i]]
return dp[target]
474. 一和零
class Solution:
def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
Len = len(strs)
# 记录下三维数组的写法,外层遍历必须用for _ in range()的方式申请内存,不能用[]*n浅拷贝的方式申请
dp = [[[0 for _ in range(n + 1)] for _ in range(m + 1)] for _ in range(Len)]
for k in range(0, Len):
cnt0 = strs[k].count('0')
cnt1 = strs[k].count('1')
for i in range(m + 1):
for j in range(n + 1):
dp[k][i][j] = dp[k-1][i][j]
if i - cnt0 >= 0 and j - cnt1 >= 0:
dp[k][i][j] = max(dp[k][i][j], dp[k-1][i-cnt0][j-cnt1] + 1)
return min(dp[Len-1][m][n],len(strs))
322. 零钱兑换
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
m = len(coins)
# dp = [[1e5]*(amount+1) for _ in range(m+1)]
# for i in range(m+1):
# dp[i][0] = 0
# for i in range(1,m+1):
# c = coins[i-1]
# for j in range(1,amount+1):
# if j >=c:
# dp[i][j] = min(dp[i-1][j],dp[i][j-c]+1)
# else:
# dp[i][j] = dp[i-1][j]
# if dp[m][amount] == 1e5:return -1
# return dp[-1][-1]
dp = [1e5]*(amount+1)
dp[0] = 0
for i in range(m):
for j in range(1,amount+1):
if j>=coins[i]:
dp[j] = min(dp[j-coins[i]]+1,dp[j])
if dp[amount] == 1e5:return -1
return dp[amount]
518. 零钱兑换 II
class Solution:
def change(self, amount: int, coins: List[int]) -> int:
m = len(coins)
# dp = [[0]*(amount+1) for _ in range(m+1)]
# for i in range(m+1):
# dp[i][0] = 1
# for i in range(1,m+1):
# c = coins[i-1]
# for j in range(1,amount+1):
# if j >= c:
# dp[i][j] = dp[i-1][j] + dp[i][j-c]
# else:
# dp[i][j] = dp[i-1][j]
# return dp[m][amount]
dp = [0] * (amount+1)
dp[0] = 1
for i in range(m):
for j in range(amount+1):
c = coins[i]
if j>=c:
dp[j] = dp[j] + dp[j-c]
return dp[amount]
01背包: 879. 盈利计划 1049. 最后一块石头的重量 II 1230. 抛掷硬币
完全背包:1449. 数位成本和为目标值的最大数字 518. 零钱兑换 II 279. 完全平方数
https://leetcode-cn.com/problems/target-sum/solution/mu-biao-he-by-leetcode-solution-o0cp/
https://leetcode-cn.com/problems/target-sum/solution/494-mu-biao-he-dong-tai-gui-hua-zhi-01be-78ll/
https://leetcode-cn.com/problems/last-stone-weight-ii/solution/yi-pian-wen-zhang-chi-tou-bei-bao-wen-ti-5lfv/
https://leetcode-cn.com/problems/combination-sum-iv/solution/xi-wang-yong-yi-chong-gui-lu-gao-ding-bei-bao-wen-/
大家在公众号里学习回溯算法专题的时候,一定做过这两道题目回溯算法:39.组合总和和回溯算法:40.组合总和II会感觉这两题和本题很像!
https://leetcode-cn.com/problems/combination-sum-iv/solution/dai-ma-sui-xiang-lu-377-zu-he-zong-he-iv-pj9s/
https://leetcode-cn.com/problems/combination-sum-iv/solution/yi-tao-kuang-jia-jie-jue-bei-bao-wen-ti-q0zxb/
以上是关于01背包/完全背包-leetcode题目总结的主要内容,如果未能解决你的问题,请参考以下文章
算法---- 01背包问题和完全背包问题LeetCode系列问题题解
算法---- 01背包问题和完全背包问题LeetCode系列问题题解