MapReduce执行流程

Posted 月疯

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MapReduce执行流程相关的知识,希望对你有一定的参考价值。

 

 

WordCount案例:

package com.hadoop.reduce;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;

public class WordCount 
    //临时配置HADOOP_HOME环境变量
    static
        System.setProperty("hadoop.home.dir","H:\\\\yingjian\\\\hadoop\\\\hadoop-2.6.0-cdh5.9.3\\\\hadoop-2.6.0-cdh5.9.3");
    
    /**
     * 默认MapReduce是通过TextInputeFormat进行切片,交给Mapper处理逻辑
     * TestInputFormat:key当前行的首字母的索引,value:当前行数据
     * Mapper类参数:输入key类型,:Long,输入Value类型:String,输出key类型:String,输出Value类型:Long
     * MapReduce为了网络传输时时序列化文件较小,执行速度快,对基本类型进行包装,实现序列化
     */
    public static class MyMapper extends Mapper<LongWritable,Text,Text,LongWritable>
        LongWritable one = new LongWritable(1);

        //没行数据拆分,拆分完进行输出
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException 
            String words = value.toString();
            //江梅行数据拆分成各个单词
            String[] wordArr = words.split(" ");
            //遍历各个单词
            for (String word : wordArr)
                //输出格式<单词,1>
                context.write(new Text(word),one);
            
        
    

    /**
     * 进行全局聚合
     * Reducer参数:输出key类型:String,输入Value类型:Long,输出key类型:String,输出Value类型:Long
     */
    public static class MyReduce extends Reducer<Text,LongWritable,Text,LongWritable> 
        //将map输出结果进行全局聚合
        //key:单词,values:个数[1,1,1]
        @Override
        protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException 
            Long sum=0L;
            for(LongWritable value:values)
                sum +=value.get();
            
            context.write(key,new LongWritable(sum));
        
    
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException 
        //创建一个job,也就是一个运行环境
        Configuration conf=new Configuration();
        //远程调用
        conf.set("fs.defaultFS","hdfs://hadoopxxxx:8082");
        Job job=Job.getInstance(conf,"word-count");
        //程序入口
        job.setJarByClass(WordCount.class);
        //输入文件
        FileInputFormat.addInputPath(job,new Path("D:\\\\words"));
        //编写mapper处理逻辑
        job.setMapperClass(MyMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
        //shuffle流程

        //编写reduce处理逻辑
        job.setReducerClass(MyReduce.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
        //输出文件
        FileOutputFormat.setOutputPath(job,new Path("D:\\\\out"));

        //运行job,需要放到Yarn上运行
        boolean result =job.waitForCompletion(true);
        System.out.print(result?1:0);
    


 maven依赖:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>groupId</groupId>
    <artifactId>hadoop</artifactId>
    <version>1.0-SNAPSHOT</version>
    <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>2.9.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.9.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.9.0</version>
        </dependency>

        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.10</version>
            <scope>test</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>2.9.0</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
            <version>2.9.0</version>
            <scope>provided</scope>
        </dependency>
    </dependencies>

</project>

1、单机运行
a、导入window支持的俩个文件:winutils.exe和hadoop.dll(放到bin目录下)
b、配置HADOOP_HOME环境变量(需要重启机器)
     临时配置环境变量:System.steProperty("hadoop.home.dir","xxx")
c、修改NativeIO类,将access0调用吃直接换成true
2、远程调用运行
windows系统的代码直接连接linux系统的hadoop环境进行运行,运行结果可以保存到本地或者HDFS服务器上
conf.set("fs.defaultFS","hdfs://hadoopxxxx:8082")
3、打jar包放到hadoop集群中运行
maven打包jar
bin/yarn jar hadoop-test.jar file:out:/opt/module/hadoop-2.6.3/LICENSE.txt file:/opt/out

以上是关于MapReduce执行流程的主要内容,如果未能解决你的问题,请参考以下文章

MapReduce架构与执行流程

详解MapReduce执行流程

MapReduce执行流程

MapReduce的执行流程及优化

MapReduce执行过程

MapReduce执行流程