Flink的ConGroup算子介绍
Posted 月疯
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Flink的ConGroup算子介绍相关的知识,希望对你有一定的参考价值。
ConGroup是Join的底层算子,就是Join算子也是通过CoGroup算子来实现的。
CoCgoup是在同一个窗口当中对同一个key上的俩组集合进行操作,比Join算子更通用,可以实现Inner Join、LeftJoin、RightJoin的效果,CoGroup的作用基本和Join基本相同,但是有一点不一样的是,如果未能找到新来的数据与另一个流在window中存在的匹配数据,仍可将该条记录进行输出,该算子只能在window中使用,但是就Inner Join而言推荐使用Join,因为Join在策略上做了优化,更高效。
场景:获取每个用户每个时刻的浏览和点击,模拟inner、left、right、join的功能。
结论:若在window中没有能够与之匹配的数据,CoGroup也会输出结果
来一个demo:
package Flink_API;
import org.apache.flink.api.common.functions.CoGroupFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
import org.apache.flink.streaming.util.serialization.KeyedDeserializationSchema;
import org.apache.flink.table.shaded.org.joda.time.DateTime;
import org.apache.flink.table.shaded.org.joda.time.format.DateTimeFormat;
import org.apache.flink.table.shaded.org.joda.time.format.DateTimeFormatter;
import org.apache.flink.util.Collector;
import java.io.Serializable;
import java.util.Properties;
public class TestConectGroup
public static void main(String[] args) throws Exception
//创建运行环境
StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();
//Flink是以数据自带的时间戳字段为准
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
//设置并行度
env.setParallelism(1);
//1、获取第一个流,获取用户的浏览信息
DataStream<UserBrowseLog> browseStream = getUserBrowseDataStream(env);
//2、获取用户的点击信息
DataStream<UserClickLog> clickStream = getUserClickLogDataStream(env);
//打印结果
browseStream.print();
clickStream.print();
//核心:通过CoGroup来实现三个Join作用
//browseStream(左流)关联clickStream(右流)
browseStream.coGroup(clickStream)
.where(new KeySelector<UserBrowseLog, String>()
@Override
public String getKey(UserBrowseLog userBrowseLog) throws Exception
return userBrowseLog.getUserID()+"_"+userBrowseLog.getEventTime();
)
.equalTo(new KeySelector<UserClickLog, String>()
@Override
public String getKey(UserClickLog userClickLog) throws Exception
return userClickLog.getUserID()+"_"+userClickLog.getEventTime();
)
.window(TumblingEventTimeWindows.of(Time.seconds(10)))//滚动窗口
.apply(new InnerJoin());
env.execute("TestConectGroup");
//通过CoGroup模拟Inner Join的功能:获取每个用户每个时刻的浏览和点击,即浏览和点击不为才输出。
public static class InnerJoin implements CoGroupFunction<UserBrowseLog,UserClickLog,String>
@Override
public void coGroup(Iterable<UserBrowseLog> left, Iterable<UserClickLog> right, Collector<String> collector) throws Exception
//俩个key相同的时候才输出
for (UserBrowseLog userBrowseLog:left)
for(UserClickLog clickLog:right)
collector.collect(userBrowseLog+"<Inner Join>"+clickLog);
//通过CoGroup模拟Left Join的功能:获取每个用户每个时刻的浏览信息,有点击顺带输出,每点击则不输出
public static class LeftJoinFunction implements CoGroupFunction<UserBrowseLog,UserClickLog,String>
@Override
public void coGroup(Iterable<UserBrowseLog> left, Iterable<UserClickLog> right, Collector<String> collector) throws Exception
for(UserBrowseLog userBrowseLog:left)
boolean noElements =true;
for(UserClickLog userClickLog:right)
noElements=false;
collector.collect(userBrowseLog+"<Left Join>"+userClickLog);
if(noElements)
collector.collect(userBrowseLog +"<Left Join>"+"null");
//通过CoGroup模拟Right Join的功能:获取每个用户每个时刻的浏览信息,有点击顺带输出,每点击则不输出
public static class RightJoinFunction implements CoGroupFunction<UserBrowseLog,UserClickLog,String>
@Override
public void coGroup(Iterable<UserBrowseLog> left, Iterable<UserClickLog> right, Collector<String> collector) throws Exception
for(UserClickLog userClickLog:right)
boolean noElement = true;
for(UserBrowseLog userBrowseLog:left)
noElement =false;
collector.collect(userBrowseLog+"<right Join>"+userClickLog);
if(noElement)
collector.collect("null"+"<right Join>"+userClickLog);
private static DataStream<UserClickLog> getUserClickLogDataStream(StreamExecutionEnvironment env)
Properties consumerProperties = new Properties();
consumerProperties.setProperty("bootstrap.severs","page01:9002");
consumerProperties.setProperty("grop.id","browsegroup");
DataStreamSource<String> dataStreamSource=env.addSource(new FlinkKafkaConsumer010<String>("browse_topic1", (KeyedDeserializationSchema<String>) new SimpleStringSchema(),consumerProperties));
DataStream<UserClickLog> processData=dataStreamSource.process(new ProcessFunction<String, UserClickLog>()
@Override
public void processElement(String s, Context context, Collector<UserClickLog> collector) throws Exception
try
UserClickLog browseLog = com.alibaba.fastjson.JSON.parseObject(s, UserClickLog.class);
if(browseLog !=null)
collector.collect(browseLog);
catch(Exception e)
System.out.print("解析Json——UserBrowseLog异常:"+e.getMessage());
);
//设置watermark
return processData.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<UserClickLog>(Time.seconds(0))
@Override
public long extractTimestamp(UserClickLog userBrowseLog)
DateTimeFormatter dateTimeFormatter= DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss");
DateTime dateTime=DateTime.parse(userBrowseLog.getEventTime(),dateTimeFormatter);
//用数字表示时间戳,单位是ms,13位
return dateTime.getMillis();
);
private static DataStream<UserBrowseLog> getUserBrowseDataStream(StreamExecutionEnvironment env)
Properties consumerProperties = new Properties();
consumerProperties.setProperty("bootstrap.severs","page01:9001");
consumerProperties.setProperty("grop.id","browsegroup");
DataStreamSource<String> dataStreamSource=env.addSource(new FlinkKafkaConsumer010<String>("browse_topic", (KeyedDeserializationSchema<String>) new SimpleStringSchema(),consumerProperties));
DataStream<UserBrowseLog> processData=dataStreamSource.process(new ProcessFunction<String, UserBrowseLog>()
@Override
public void processElement(String s, Context context, Collector<UserBrowseLog> collector) throws Exception
try
UserBrowseLog browseLog = com.alibaba.fastjson.JSON.parseObject(s, UserBrowseLog.class);
if(browseLog !=null)
collector.collect(browseLog);
catch(Exception e)
System.out.print("解析Json——UserBrowseLog异常:"+e.getMessage());
);
//设置watermark
return processData.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<UserBrowseLog>(Time.seconds(0))
@Override
public long extractTimestamp(UserBrowseLog userBrowseLog)
DateTimeFormatter dateTimeFormatter= DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss");
DateTime dateTime=DateTime.parse(userBrowseLog.getEventTime(),dateTimeFormatter);
//用数字表示时间戳,单位是ms,13位
return dateTime.getMillis();
);
//浏览类
public static class UserBrowseLog implements Serializable
private String userID;
private String eventTime;
private String eventType;
private String productID;
private Integer productPrice;
public String getUserID()
return userID;
public void setUserID(String userID)
this.userID = userID;
public String getEventTime()
return eventTime;
public void setEventTime(String eventTime)
this.eventTime = eventTime;
public String getEventType()
return eventType;
public void setEventType(String eventType)
this.eventType = eventType;
public String getProductID()
return productID;
public void setProductID(String productID)
this.productID = productID;
public Integer getProductPrice()
return productPrice;
public void setProductPrice(Integer productPrice)
this.productPrice = productPrice;
@Override
public String toString()
return "UserBrowseLog" +
"userID='" + userID + '\\'' +
", eventTime='" + eventTime + '\\'' +
", eventType='" + eventType + '\\'' +
", productID='" + productID + '\\'' +
", productPrice=" + productPrice +
'';
//点击类
public static class UserClickLog implements Serializable
private String userID;
private String eventTime;
private String eventType;
private String pageID;
public String getUserID()
return userID;
public void setUserID(String userID)
this.userID = userID;
public String getEventTime()
return eventTime;
public void setEventTime(String eventTime)
this.eventTime = eventTime;
public String getEventType()
return eventType;
public void setEventType(String eventType)
this.eventType = eventType;
public String getPageID()
return pageID;
public void setPageID(String pageID)
this.pageID = pageID;
@Override
public String toString()
return "UserClickLog" +
"userID='" + userID + '\\'' +
", eventTime='" + eventTime + '\\'' +
", eventType='" + eventType + '\\'' +
", pageID='" + pageID + '\\'' +
'';
以上是关于Flink的ConGroup算子介绍的主要内容,如果未能解决你的问题,请参考以下文章