使用Python实现Hadoop MapReduce程序

Posted Maynor学长

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用Python实现Hadoop MapReduce程序相关的知识,希望对你有一定的参考价值。

转自:使用Python实现Hadoop MapReduce程序

英文原文:Writing an Hadoop MapReduce Program in Python

根据上面两篇文章,下面是我在自己的ubuntu上的运行过程。文字基本采用博文使用Python实现Hadoop MapReduce程序, 打字很浪费时间滴。

在这个实例中,我将会向大家介绍如何使用PythonHadoop编写一个简单的MapReduce程序。

尽管Hadoop 框架是使用Java编写的但是我们仍然需要使用像C++、Python等语言来实现 Hadoop程序。尽管Hadoop官方网站给的示例程序是使用Jython编写并打包成Jar文件,这样显然造成了不便,其实,不一定非要这样来实现,我们可以使用Python与Hadoop 关联进行编程,看看位于/src/examples/python/WordCount.py 的例子,你将了解到我在说什么。

我们想要做什么?

我们将编写一个简单的 MapReduce 程序,使用的是C-Python,而不是Jython编写后打包成jar包的程序。
我们的这个例子将模仿 WordCount 并使用Python来实现,例子通过读取文本文件来统计出单词的出现次数。结果也以文本形式输出,每一行包含一个单词和单词出现的次数,两者中间使用制表符来想间隔。

先决条件

编写这个程序之前,你学要架设好Hadoop 集群,这样才能不会在后期工作抓瞎。如果你没有架设好,那么在后面有个简明教程来教你在Ubuntu Linux 上搭建(同样适用于其他发行版linux、unix)

如何在Ubuntu Linux 上搭建hadoop的单节点模式和伪分布模式,请参阅博文 Ubuntu上搭建Hadoop环境(单机模式+伪分布模式)

Python的MapReduce代码

使用Python编写MapReduce代码的技巧就在于我们使用了 HadoopStreaming 来帮助我们在Map 和 Reduce间传递数据通过STDIN (标准输入)和STDOUT (标准输出).我们仅仅使用Python的sys.stdin来输入数据,使用sys.stdout输出数据,这样做是因为HadoopStreaming会帮我们办好其他事。这是真的,别不相信!
Map: mapper.py

将下列的代码保存在/usr/local/hadoop/mapper.py中,他将从STDIN读取数据并将单词成行分隔开,生成一个列表映射单词与发生次数的关系:
注意:要确保这个脚本有足够权限(chmod +x mapper.py)。

#!/usr/bin/env python



 



import sys



 



# input comes from STDIN (standard input)



for line in sys.stdin:



    # remove leading and trailing whitespace



    line = line.strip()



    # split the line into words



    words = line.split()



    # increase counters



    for word in words:



        # write the results to STDOUT (standard output);



        # what we output here will be the input for the



        # Reduce step, i.e. the input for reducer.py



        #



        # tab-delimited; the trivial word count is 1



        print '%s\\t%s' % (word, 1)

在这个脚本中,并不计算出单词出现的总数,它将输出 " 1" 迅速地,尽管可能会在输入中出现多次,计算是留给后来的Reduce步骤(或叫做程序)来实现。当然你可以改变下编码风格,完全尊重你的习惯。Reduce: reducer.py

将代码存储在/usr/local/hadoop/reducer.py 中,这个脚本的作用是从mapper.py 的STDIN中读取结果,然后计算每个单词出现次数的总和,并输出结果到STDOUT。

同样,要注意脚本权限:chmod +x reducer.py

#!/usr/bin/env python

from operator import itemgetter

import sys

current_word = None

current_count = 0

word = None

# input comes from STDIN

for line in sys.stdin:

    # remove leading and trailing whitespace

    line = line.strip()

    # parse the input we got from mapper.py

    word, count = line.split('\\t', 1)

    # convert count (currently a string) to int

    try:
     count = int(count)
   except ValueError:
       # count was not a number, so silently
      # ignore/discard this line
       continue
   # this IF-switch only works because Hadoop sorts map output
  # by key (here: word) before it is passed to the reducer
   if current_word == word:
       current_count += count
    else:
        if current_word:
        # write result to STDOUT
        print '%s\\t%s' % (current_word, current_count)
     current_count = count
        current_word = word

# do not forget to output the last word if needed!
if current_word == word:
 print '%s\\t%s' % (current_word, current_count)

测试你的代码(cat data | map | sort | reduce)

我建议你在运行MapReduce job测试前尝试手工测试你的mapper.py 和 reducer.py脚本,以免得不到任何返回结果

这里有一些建议,关于如何测试你的Map和Reduce的功能:

hadoop@derekUbun:/usr/local/hadoop$ echo "foo foo quux labs foo bar quux" | ./mapper.py
foo 	 1
foo 	 1
quux 	 1
labs 	 1
foo 	 1
bar 	 1
quux 	 1
hadoop@derekUbun:/usr/local/hadoop$ echo "foo foo quux labs foo bar quux" |./mapper.py | sort |./reducer.py
bar 	1
foo 	3
labs 	1
quux 	2

# using one of the ebooks as example input
# (see below on where to get the ebooks)

hadoop@derekUbun:/usr/local/hadoop$ cat book/book.txt |./mapper.pysubscribe 	 1
to 	 1
our 	 1
email 	 1
newsletter 	 1
to 	 1
hear 	 1
about 	 1
new 	 1
eBooks. 	 1

Hadoop平台上运行Python脚本

为了这个例子,我们将需要一本电子书,把它放在/usr/local/hadpoop/book/book.txt之下

hadoop@derekUbun:/usr/local/hadoop$ ls -l book
总用量 636
-rw-rw-r-- 1 derek derek 649669  312 12:22 book.txt

复制本地数据到HDFS

在我们运行MapReduce job 前,我们需要将本地的文件复制到HDFS中:

hadoop@derekUbun:/usr/local/hadoop$ hadoop dfs -copyFromLocal /usr/local/hadoop/book book
hadoop@derekUbun:/usr/local/hadoop$ hadoop dfs -ls
Found 3 items
drwxr-xr-x   - hadoop supergroup          0 2013-03-12 15:56 /user/hadoop/book

执行 MapReduce job现在,一切准备就绪,我们将在运行Python MapReduce job 在Hadoop集群上。像我上面所说的,我们使用的是HadoopStreaming 帮助我们传递数据在Map和Reduce间并通过STDIN和STDOUT,进行标准化输入输出。

hadoop@derekUbun:/usr/local/hadoop$hadoop jar contrib/streaming/hadoop-streaming-1.1.2.jar 
-mapper /usr/local/hadoop/mapper.py 
-reducer /usr/local/hadoop/reducer.py 
-input book/* 
-output book-output

在运行中,如果你想更改Hadoop的一些设置,如增加Reduce任务的数量,你可以使用“-jobconf”选项:

hadoop@derekUbun:/usr/local/hadoop$hadoop jar contrib/streaming/hadoop-streaming-1.1.2.jar 
-jobconf mapred.reduce.tasks=4

-mapper /usr/local/hadoop/mapper.py 
-reducer /usr/local/hadoop/reducer.py 
-input book/* 
-output book-output 

如果上面两个运行出错,请参考下面一段代码。注意,重新运行,需要删除dfs中的output文件

bin/hadoop jar contrib/streaming/hadoop-streaming-1.1.2.jar  
-mapper task1/mapper.py  
-file task1/mapper.py  
-reducer task1/reducer.py  
-file task1/reducer.py  
-input url 
-output url-output  
-jobconf mapred.reduce.tasks=3 

一个重要的备忘是关于Hadoop does not honor mapred.map.tasks 这个任务将会读取HDFS目录下的book并处理他们,将结果存储在独立的结果文件中,并存储在HDFS目录下的book-output目录。之前执行的结果如下:

hadoop@derekUbun:/usr/local/hadoop$ hadoop jar contrib/streaming/hadoop-streaming-1.1.2.jar -jobconf mapred.reduce.tasks=4 -mapper /usr/local/hadoop/mapper.py -reducer /usr/local/hadoop/reducer.py -input book/* -output book-output
13/03/12 16:01:05 WARN streaming.StreamJob: -jobconf option is deprecated, please use -D instead.
packageJobJar: [/usr/local/hadoop/tmp/hadoop-unjar4835873410426602498/] [] /tmp/streamjob5047485520312501206.jar tmpDir=null
13/03/12 16:01:06 INFO util.NativeCodeLoader: Loaded the native-hadoop library
13/03/12 16:01:06 WARN snappy.LoadSnappy: Snappy native library not loaded
13/03/12 16:01:06 INFO mapred.FileInputFormat: Total input paths to process : 1
13/03/12 16:01:06 INFO streaming.StreamJob: getLocalDirs(): [/usr/local/hadoop/tmp/mapred/local]
13/03/12 16:01:06 INFO streaming.StreamJob: Running job: job_201303121448_0010
13/03/12 16:01:06 INFO streaming.StreamJob: To kill this job, run:
13/03/12 16:01:06 INFO streaming.StreamJob: /usr/local/hadoop/libexec/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201303121448_0010
13/03/12 16:01:06 INFO streaming.StreamJob: Tracking URL: http://localhost:50030/jobdetails.jsp?jobid=job_201303121448_0010
13/03/12 16:01:07 INFO streaming.StreamJob:  map 0%  reduce 0%
13/03/12 16:01:10 INFO streaming.StreamJob:  map 100%  reduce 0%
13/03/12 16:01:17 INFO streaming.StreamJob:  map 100%  reduce 8%
13/03/12 16:01:18 INFO streaming.StreamJob:  map 100%  reduce 33%
13/03/12 16:01:19 INFO streaming.StreamJob:  map 100%  reduce 50%
13/03/12 16:01:26 INFO streaming.StreamJob:  map 100%  reduce 67%
13/03/12 16:01:27 INFO streaming.StreamJob:  map 100%  reduce 83%
13/03/12 16:01:28 INFO streaming.StreamJob:  map 100%  reduce 100%
13/03/12 16:01:29 INFO streaming.StreamJob: Job complete: job_201303121448_0010
13/03/12 16:01:29 INFO streaming.StreamJob: Output: book-output
hadoop@derekUbun:/usr/local/hadoop$

如你所见到的上面的输出结果,Hadoop 同时还提供了一个基本的WEB接口显示统计结果和信息。
当Hadoop集群在执行时,你可以使用浏览器访问 http://localhost:50030/ :

检查结果是否输出并存储在HDFS目录下的book-output中:

hadoop@derekUbun:/usr/local/hadoop$ hadoop dfs -ls book-output
Found 6 items
-rw-r--r--   2 hadoop supergroup          0 2013-03-12 16:01 /user/hadoop/book-output/_SUCCESS
drwxr-xr-x   - hadoop supergroup          0 2013-03-12 16:01 /user/hadoop/book-output/_logs
-rw-r--r--   2 hadoop supergroup         33 2013-03-12 16:01 /user/hadoop/book-output/part-00000
-rw-r--r--   2 hadoop supergroup         60 2013-03-12 16:01 /user/hadoop/book-output/part-00001
-rw-r--r--   2 hadoop supergroup         54 2013-03-12 16:01 /user/hadoop/book-output/part-00002
-rw-r--r--   2 hadoop supergroup         47 2013-03-12 16:01 /user/hadoop/book-output/part-00003
hadoop@derekUbun:/usr/local/hadoop$

可以使用dfs -cat 命令检查文件目录

hadoop@derekUbun:/usr/local/hadoop$ hadoop dfs -cat book-output/part-00000
about 	1
eBooks. 	1
the 	1
to 	2
hadoop@derekUbun:/usr/local/hadoop$ 

下面是原英文作者mapper.py和reducer.py的两个修改版本:

mapper.py

#!/usr/bin/env python
"""A more advanced Mapper, using Python iterators and generators."""
import sys
def read_input(file):
 for line in file:
   # split the line into words
   yield line.split()
def main(separator='\\t'):
 # input comes from STDIN (standard input)
 data = read_input(sys.stdin)
 for words in data:
      # write the results to STDOUT (standard output);
    # what we output here will be the input for the
    # Reduce step, i.e. the input for reducer.py
      #
      # tab-delimited; the trivial word count is 1
     for word in words:
         print '%s%s%d' % (word, separator, 1)
if __name__ == "__main__":
  main()

reducer.py

#!/usr/bin/env python
"""A more advanced Reducer, using Python iterators and generators."""
from itertools import groupby
from operator import itemgetter
import sys
def read_mapper_output(file, separator='\\t'):
   for line in file:
      yield line.rstrip().split(separator, 1)
def main(separator='\\t'):
    # input comes from STDIN (standard input)
    data = read_mapper_output(sys.stdin, separator=separator)
    # groupby groups multiple word-count pairs by word,
    # and creates an iterator that returns consecutive keys and their group:
    #   current_word - string containing a word (the key)
    #   group - iterator yielding all ["<current_word>", "<count>"] items
   for current_word, group in groupby(data, itemgetter(0)):
        try:
           total_count = sum(int(count) for current_word, count in group)
           print "%s%s%d" % (current_word, separator, total_count)
       except ValueError:
          # count was not a number, so silently discard this item
           pass
if __name__ == "__main__":
 		  main()
 

以上是关于使用Python实现Hadoop MapReduce程序的主要内容,如果未能解决你的问题,请参考以下文章

怎样利用Spark Streaming和Hadoop实现近实时的会话连接

python python-get-count-by-date-mapreduce.py

Hive基础架构

hadoop配置 --启动YARN

Hadoop MapReduce 入门实例

Hadoop 推测执行