LightGBM 如何调参
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LightGBM 如何调参相关的知识,希望对你有一定的参考价值。
参考技术A 本文结构:Light GBM is a gradient boosting framework that uses tree based learning algorithm.
LightGBM 垂直地生长树,即 leaf-wise,它会选择最大 delta loss 的叶子来增长。
而以往其它基于树的算法是水平地生长,即 level-wise,
当生长相同的叶子时,Leaf-wise 比 level-wise 减少更多的损失。
高速,高效处理大数据,运行时需要更低的内存,支持 GPU
不要在少量数据上使用,会过拟合,建议 10,000+ 行记录时使用。
下面几张表为重要参数的含义和如何应用
下表对应了 Faster Speed ,better accuracy ,over-fitting 三种目的时,可以调的参数
setting parameters:
training model :
Execution time of the model:
predicting model on test set:
Converting probabilities into 1 or 0:
calculating accuracy of our model :
calculating roc_auc_score:
最后可以建立一个 dataframe 来比较 Lightgbm 和 xgb:
学习资料:
https://medium.com/@pushkarmandot/https-medium-com-pushkarmandot-what-is-lightgbm-how-to-implement-it-how-to-fine-tune-the-parameters-60347819b7fc
https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost/
推荐阅读 历史技术博文链接汇总
http://www.jianshu.com/p/28f02bb59fe5
也许可以找到你想要的:
[入门问题][TensorFlow][深度学习][强化学习][神经网络][机器学习][自然语言处理][聊天机器人]
集成学习lightgbm调参
lightgbm使用leaf_wise tree生长策略,leaf_wise_tree的优点是收敛速度快,缺点是容易过拟合。
# lightgbm关键参数
# lightgbm调参方法cv
1 # -*- coding: utf-8 -*- 2 """ 3 # 作者:wanglei5205 4 # 邮箱:wanglei5205@126.com 5 # 博客:http://cnblogs.com/wanglei5205 6 # github:http://github.com/wanglei5205 7 """ 8 ### 导入模块 9 import numpy as np 10 import pandas as pd 11 import lightgbm as lgb 12 from sklearn import metrics 13 14 ### 载入数据 15 print(\'载入数据\') 16 dataset1 = pd.read_csv(\'G:/ML/ML_match/IJCAI/data3.22/3.22ICJAI/data/7_train_data1.csv\') 17 dataset2 = pd.read_csv(\'G:/ML/ML_match/IJCAI/data3.22/3.22ICJAI/data/7_train_data2.csv\') 18 dataset3 = pd.read_csv(\'G:/ML/ML_match/IJCAI/data3.22/3.22ICJAI/data/7_train_data3.csv\') 19 dataset4 = pd.read_csv(\'G:/ML/ML_match/IJCAI/data3.22/3.22ICJAI/data/7_train_data4.csv\') 20 dataset5 = pd.read_csv(\'G:/ML/ML_match/IJCAI/data3.22/3.22ICJAI/data/7_train_data5.csv\') 21 22 print(\'数据去重\') 23 dataset1.drop_duplicates(inplace=True) 24 dataset2.drop_duplicates(inplace=True) 25 dataset3.drop_duplicates(inplace=True) 26 dataset4.drop_duplicates(inplace=True) 27 dataset5.drop_duplicates(inplace=True) 28 29 print(\'数据合并\') 30 trains = pd.concat([dataset1,dataset2],axis=0) 31 trains = pd.concat([trains,dataset3],axis=0) 32 trains = pd.concat([trains,dataset4],axis=0) 33 34 online_test = dataset5 35 36 ### 数据拆分(训练集+验证集+测试集) 37 print(\'数据拆分\') 38 from sklearn.model_selection import train_test_split 39 train_xy,offline_test = train_test_split(trains,test_size = 0.2,random_state=21) 40 train,val = train_test_split(train_xy,test_size = 0.2,random_state=21) 41 42 # 训练集 43 y_train = train.is_trade # 训练集标签 44 X_train = train.drop([\'instance_id\',\'is_trade\'],axis=1) # 训练集特征矩阵 45 46 # 验证集 47 y_val = val.is_trade # 验证集标签 48 X_val = val.drop([\'instance_id\',\'is_trade\'],axis=1) # 验证集特征矩阵 49 50 # 测试集 51 offline_test_X = offline_test.drop([\'instance_id\',\'is_trade\'],axis=1) # 线下测试特征矩阵 52 online_test_X = online_test.drop([\'instance_id\'],axis=1) # 线上测试特征矩阵 53 54 ### 数据转换 55 print(\'数据转换\') 56 lgb_train = lgb.Dataset(X_train, y_train, free_raw_data=False) 57 lgb_eval = lgb.Dataset(X_val, y_val, reference=lgb_train,free_raw_data=False) 58 59 ### 设置初始参数--不含交叉验证参数 60 print(\'设置参数\') 61 params = { 62 \'boosting_type\': \'gbdt\', 63 \'objective\': \'binary\', 64 \'metric\': \'binary_logloss\', 65 } 66 67 ### 交叉验证(调参) 68 print(\'交叉验证\') 69 min_merror = float(\'Inf\') 70 best_params = {} 71 72 # 准确率 73 print("调参1:提高准确率") 74 for num_leaves in range(20,200,5): 75 for max_depth in range(3,8,1): 76 params[\'num_leaves\'] = num_leaves 77 params[\'max_depth\'] = max_depth 78 79 cv_results = lgb.cv( 80 params, 81 lgb_train, 82 seed=2018, 83 nfold=3, 84 metrics=[\'binary_error\'], 85 early_stopping_rounds=10, 86 verbose_eval=True 87 ) 88 89 mean_merror = pd.Series(cv_results[\'binary_error-mean\']).min() 90 boost_rounds = pd.Series(cv_results[\'binary_error-mean\']).argmin() 91 92 if mean_merror < min_merror: 93 min_merror = mean_merror 94 best_params[\'num_leaves\'] = num_leaves 95 best_params[\'max_depth\'] = max_depth 96 97 params[\'num_leaves\'] = best_params[\'num_leaves\'] 98 params[\'max_depth\'] = best_params[\'max_depth\'] 99 100 # 过拟合 101 print("调参2:降低过拟合") 102 for max_bin in range(1,255,5): 103 for min_data_in_leaf in range(10,200,5): 104 params[\'max_bin\'] = max_bin 105 params[\'min_data_in_leaf\'] = min_data_in_leaf 106 107 cv_results = lgb.cv( 108 params, 109 lgb_train, 110 seed=42, 111 nfold=3, 112 metrics=[\'binary_error\'], 113 early_stopping_rounds=3, 114 verbose_eval=True 115 ) 116 117 mean_merror = pd.Series(cv_results[\'binary_error-mean\']).min() 118 boost_rounds = pd.Series(cv_results[\'binary_error-mean\']).argmin() 119 120 if mean_merror < min_merror: 121 min_merror = mean_merror 122 best_params[\'max_bin\']= max_bin 123 best_params[\'min_data_in_leaf\'] = min_data_in_leaf 124 125 params[\'min_data_in_leaf\'] = best_params[\'min_data_in_leaf\'] 126 params[\'max_bin\'] = best_params[\'max_bin\'] 127 128 print("调参3:降低过拟合") 129 for feature_fraction in [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]: 130 for bagging_fraction in [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]: 131 for bagging_freq in range(0,50,5): 132 params[\'feature_fraction\'] = feature_fraction 133 params[\'bagging_fraction\'] = bagging_fraction 134 params[\'bagging_freq\'] = bagging_freq 135 136 cv_results = lgb.cv( 137 params, 138 lgb_train, 139 seed=42, 140 nfold=3, 141 metrics=[\'binary_error\'], 142 early_stopping_rounds=3, 143 verbose_eval=True 144 ) 145 146 mean_merror = pd.Series(cv_results[\'binary_error-mean\']).min() 147 boost_rounds = pd.Series(cv_results[\'binary_error-mean\']).argmin() 148 149 if mean_merror < min_merror: 150 min_merror = mean_merror 151 best_params[\'feature_fraction\'] = feature_fraction 152 best_params[\'bagging_fraction\'] = bagging_fraction 153 best_params[\'bagging_freq\'] = bagging_freq 154 155 params[\'feature_fraction\'] = best_params[\'feature_fraction\'] 156 params[\'bagging_fraction\'] = best_params[\'bagging_fraction\'] 157 params[\'bagging_freq\'] = best_params[\'bagging_freq\'] 158 159 print("调参4:降低过拟合") 160 for lambda_l1 in [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]: 161 for lambda_l2 in [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]: 162 for min_split_gain in [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]: 163 params[\'lambda_l1\'] = lambda_l1 164 params[\'lambda_l2\'] = lambda_l2 165 params[\'min_split_gain\'] = min_split_gain 166 167 cv_results = lgb.cv( 168 params, 169 lgb_train, 170 seed=42, 171 nfold=3, 172 metrics=[\'binary_error\'], 173 early_stopping_rounds=3, 174 verbose_eval=True 175 ) 176 177 mean_merror = pd.Series(cv_results[\'binary_error-mean\']).min() 178 boost_rounds = pd.Series(cv_results[\'binary_error-mean\']).argmin() 179 180 if mean_merror < min_merror: 181 min_merror = mean_merror 182 best_params[\'lambda_l1\'] = lambda_l1 183 best_params[\'lambda_l2\'] = lambda_l2 184 best_params[\'min_split_gain\'] = min_split_gain 185 186 params[\'lambda_l1\'] = best_params[\'lambda_l1\'] 187 params[\'lambda_l2\'] = best_params[\'lambda_l2\'] 188 params[\'min_split_gain\'] = best_params[\'min_split_gain\'] 189 190 191 print(best_params) 192 193 ### 训练 194 params[\'learning_rate\']=0.01 195 lgb.train( 196 params, # 参数字典 197 lgb_train, # 训练集 198 valid_sets=lgb_eval, # 验证集 199 num_boost_round=2000, # 迭代次数 200 early_stopping_rounds=50 # 早停次数 201 ) 202 203 ### 线下预测 204 print ("线下预测") 205 preds_offline = lgb.predict(offline_test_X, num_iteration=lgb.best_iteration) # 输出概率 206 offline=offline_test[[\'instance_id\',\'is_trade\']] 207 offline[\'preds\']=preds_offline 208 offline.is_trade = offline[\'is_trade\'].astype(np.float64) 209 print(\'log_loss\', metrics.log_loss(offline.is_trade, offline.preds)) 210 211 ### 线上预测 212 print("线上预测") 213 preds_online = lgb.predict(online_test_X, num_iteration=lgb.best_iteration) # 输出概率 214 online=online_test[[\'instance_id\']] 215 online[\'preds\']=preds_online 216 online.rename(columns={\'preds\':\'predicted_score\'},inplace=True) # 更改列名 217 online.to_csv("./data/20180405.txt",index=None,sep=\' \') # 保存结果 218 219 ### 保存模型 220 from sklearn.externals import joblib 221 joblib.dump(lgb,\'lgb.pkl\') 222 223 ### 特征选择 224 df = pd.DataFrame(X_train.columns.tolist(), columns=[\'feature\']) 225 df[\'importance\']=list(lgb.feature_importance()) # 特征分数 226 df = df.sort_values(by=\'importance\',ascending=False) # 特征排序 227 df.to_csv("./data/feature_score_20180331.csv",index=None,encoding=\'gbk\') # 保存分数
以上是关于LightGBM 如何调参的主要内容,如果未能解决你的问题,请参考以下文章
对xgboost和lightgbm的理解及其调参应该关注的点
lightgbm的sklearn接口和原生接口参数详细说明及调参指点
数据挖掘机器学习[四]---汽车交易价格预测详细版本{嵌入式特征选择(XGBoots,LightGBM),模型调参(贪心网格贝叶斯调参)}