HashMap原理 — 扩容机制及存取原理

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HashMap原理 — 扩容机制及存取原理相关的知识,希望对你有一定的参考价值。

参考技术A

回顾一下基本概念:

一. put方法

HashMap使用哈希算法得到数组中保存的位置,然后调用put方法将key-value对保存到table变量中。我们通过图来演示一下存储的过程。

简单解释一下:

我们关注一下这里面最重要的三个方法,hash(),putVal(),resize().

1. hash方法

我们通过hash方法计算索引,得到数组中保存的位置,看一下源码

我们可以看到HashMap中的hash算法是通过key的hashcode值与其hashcode右移16位后得到的值进行异或运算得到的,那么为什么不直接使用key.hashCode(),而要进行异或操作?我们知道hash的目的是为了得到进行索引,而hash是有可能冲突的,也就是不同的key得到了同样的hash值,这样就很容易产业碰撞,如何减少这种情况的发生呢,就通过上述的hash(Object key)算法将hashcode 与 hashcode的低16位做异或运算,混合了高位和低位得出的最终hash值,冲突的概率就小多了。举个例子:

我们的hash(Object key)算法一个道理,最终的hash值混合了高位和低位的信息,掺杂的元素多了,那么最终hash值的随机性越大,而HashMap的table下标依赖于最终hash值与table.length()-1的&运算,这里的&运算类似于挑包子的过程,自然冲突就小得多了。计算过程如下:

2. putVal方法

通过putVal方法将传递的key-value对添加到数组table中。

3. resize方法

HashMap通过resize()方法进行扩容,容量规则为2的幂次

二. get方法

我们先简单说一下get(Object key)流程,通过传入的key通过hash()算法得到hash值,在通过(n - 1) & hash找到数组下标,如果数组下标所对应的node值正好key一样就返回,否则找到node.next找到下一个节点,看是否是treenNode,如果是,遍历红黑树找到对应node,如果不是遍历链表找到node。我们看一下源码

这几个方法是核心,虽然HashMap还有很多常用方法,不过大体和这几个方法有关,或者实现逻辑相似,这里就不再多说了。

三. 总结

本文在上一章基本概念和底层结构的基础上,从源码的角度讲解了扩容机制以及存取原理,主要分析了put方法和get方法,put方法的核心为hash(),putVal(),resize(),get方法的核心为getNode()。

HashMap原理 扩容机制及存取原理

我们在上一个章节《HashMap原理(一) 概念和底层架构》中讲解了HashMap的存储数据结构以及常用的概念及变量,包括capacity容量,threshold变量和loadFactor变量等。本章主要讲解HashMap的扩容机制及存取原理。

先回顾一下基本概念:

table变量:HashMap的底层数据结构,是Node类的实体数组,用于保存key-value对;

capacity:并不是一个成员变量,但却是一个必须要知道的概念,表示容量;

size变量:表示已存储的HashMap的key-value对的数量;

loadFactor变量:装载因子,用于衡量满的程度;

threshold变量:临界值,当超出该值时,表示table表示该扩容了;

一. put方法

HashMap使用哈希算法得到数组中保存的位置,然后调用put方法将key-value对保存到table变量中。我们通过图来演示一下存储的过程。

技术图片

简单解释一下:

1)通过hash(Object key)算法得到hash值;

2)判断table是否为null或者长度为0,如果是执行resize()进行扩容;

3)通过hash值以及table数组长度得到插入的数组索引i,判断数组table[i]是否为空或为null;
4)如果table[i] == null,直接新建节点添加,转向 8),如果table[i]不为空,转向 5);
5)判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,这里的相同指的是hashCode以及equals,否则转向 6);
6)判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转7);
7)遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
8)插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。

我们关注一下这里面最重要的三个方法,hash(),putVal(),resize().

1. hash方法

我们通过hash方法计算索引,得到数组中保存的位置,看一下源码

static final int hash(Object key) 
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);

我们可以看到HashMap中的hash算法是通过key的hashcode值与其hashcode右移16位后得到的值进行异或运算得到的,那么为什么不直接使用key.hashCode(),而要进行异或操作?我们知道hash的目的是为了得到进行索引,而hash是有可能冲突的,也就是不同的key得到了同样的hash值,这样就很容易产业碰撞,如何减少这种情况的发生呢,就通过上述的hash(Object key)算法将hashcode 与 hashcode的低16位做异或运算,混合了高位和低位得出的最终hash值,冲突的概率就小多了。举个例子:

有个蒸笼,第一层是猪肉包、牛肉包、鸡肉包,第二层是白菜包,第三层是豆沙包,第四层是香菇包。这时你来买早餐,你指着第一层说除了猪肉包,随便给我一个包子,因为外表无法分辨,这时拿到猪肉包的概率就有1/3,如果将二层、三层、四层与一层混合在一起了,那么拿到猪肉包的概率就小多了。

我们的hash(Object key)算法一个道理,最终的hash值混合了高位和低位的信息,掺杂的元素多了,那么最终hash值的随机性越大,而HashMap的table下标依赖于最终hash值与table.length()-1的&运算,这里的&运算类似于挑包子的过程,自然冲突就小得多了。计算过程如下:

最开始的hashCode: 1111 1111 1111 1111 0100 1100 0000 1010

右移16位的hashCode:0000 0000 0000 0000 1111 1111 1111 1111

异或运算后的hash值: 1111 1111 1111 1111 1011 0011 1111 0101

2. putVal方法

通过putVal方法将传递的key-value对添加到数组table中。

/**
 * Implements Map.put and related methods
 *
 * @param hash hash for key
 * @param key the key
 * @param value the value to put
 * @param onlyIfAbsent if true, don't change existing value
 * @param evict if false, the table is in creation mode.
 * @return previous value, or null if none
 */
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) 
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    /**
     * 如果当前HashMap的table数组还未定义或者还未初始化其长度,则先通过resize()进行扩容,
     * 返回扩容后的数组长度n
     */
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    //通过数组长度与hash值做按位与&运算得到对应数组下标,若该位置没有元素,则new Node直接将新元素插入
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    //否则该位置已经有元素了,我们就需要进行一些其他操作
    else 
        Node<K,V> e; K k;
        //如果插入的key和原来的key相同,则替换一下就完事了
        if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        /**
         * 否则key不同的情况下,判断当前Node是否是TreeNode,如果是则执行putTreeVal将新的元素插入
         * 到红黑树上。
         */
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        //如果不是TreeNode,则进行链表遍历
        else 
            for (int binCount = 0; ; ++binCount) 
                /**
                 * 在链表最后一个节点之后并没有找到相同的元素,则进行下面的操作,直接new Node插入,
                 * 但条件判断有可能转化为红黑树
                 */
                if ((e = p.next) == null) 
                    //直接new了一个Node
                    p.next = newNode(hash, key, value, null);
                    /**
                     * TREEIFY_THRESHOLD=8,因为binCount从0开始,也即是链表长度超过8(包含)时,
                     * 转为红黑树。
                     */
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                
                /**
                 * 如果在链表的最后一个节点之前找到key值相同的(和上面的判断不冲突,上面是直接通过数组
                 * 下标判断key值是否相同),则替换
                 */
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            
        
        if (e != null)  // existing mapping for key
            V oldValue = e.value;
            //onlyIfAbsent为true时:当某个位置已经存在元素时不去覆盖
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        
    
    ++modCount;
    //最后判断临界值,是否扩容。
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;

3. resize方法

HashMap通过resize()方法进行扩容,容量规则为2的幂次

/**
 * Initializes or doubles table size.  If null, allocates in
 * accord with initial capacity target held in field threshold.
 * Otherwise, because we are using power-of-two expansion, the
 * elements from each bin must either stay at same index, or move
 * with a power of two offset in the new table.
 *
 * @return the table
 */
final Node<K,V>[] resize() 
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    //以前的容量大于0,也就是hashMap中已经有元素了,或者new对象的时候设置了初始容量
    if (oldCap > 0) 
        //如果以前的容量大于限制的最大容量1<<30,则设置临界值为int的最大值2^31-1
        if (oldCap >= MAXIMUM_CAPACITY) 
            threshold = Integer.MAX_VALUE;
            return oldTab;
        
        /**
         * 如果以前容量的2倍小于限制的最大容量,同时大于或等于默认的容量16,则设置临界值为以前临界值的2
         * 倍,因为threshold = loadFactor*capacity,capacity扩大了2倍,loadFactor不变,
         * threshold自然也扩大2倍。
         */
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    
    /**
     * 在HashMap构造器Hash(int initialCapacity, float loadFactor)中有一句代码,this.threshold      
     * = tableSizeFor(initialCapacity), 表示在调用构造器时,默认是将初始容量暂时赋值给了
     * threshold临界值,因此此处相当于将上一次的初始容量赋值给了新的容量。什么情况下会执行到这句?当调用     
     * 了HashMap(int initialCapacity)构造器,还没有添加元素时
     */
    else if (oldThr > 0) 
        newCap = oldThr;
    /**
     * 调用了默认构造器,初始容量没有设置,因此使用默认容量DEFAULT_INITIAL_CAPACITY(16),临界值
     * 就是16*0.75
     */
    else                
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    
    //对临界值做判断,确保其不为0,因为在上面第二种情况(oldThr > 0),并没有计算newThr
    if (newThr == 0) 
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    
    threshold = newThr;
    
    @SuppressWarnings("rawtypes","unchecked")
    /**构造新表,初始化表中数据*/
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    //将刚创建的新表赋值给table
    table = newTab;
    if (oldTab != null) 
        //遍历将原来table中的数据放到扩容后的新表中来
        for (int j = 0; j < oldCap; ++j) 
            Node<K,V> e;
            if ((e = oldTab[j]) != null) 
                oldTab[j] = null;
                //没有链表Node节点,直接放到新的table中下标为【e.hash & (newCap - 1)】位置即可
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                //如果是treeNode节点,则树上的节点放到newTab中
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                //如果e后面还有链表节点,则遍历e所在的链表,
                else  // 保证顺序
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do 
                        //记录下一个节点
                        next = e.next;
                        /**
                         * newTab的容量是以前旧表容量的两倍,因为数组table下标并不是根据循环逐步递增
                         * 的,而是通过(table.length-1)& hash计算得到,因此扩容后,存放的位置就
                         * 可能发生变化,那么到底发生怎样的变化呢,就是由下面的算法得到.
                         *
                         * 通过e.hash & oldCap来判断节点位置通过再次hash算法后,是否会发生改变,如
                         * 果为0表示不会发生改变,如果为1表示会发生改变。到底怎么理解呢,举个例子:
                         * e.hash = 13 二进制:0000 1101
                         * oldCap = 32 二进制:0001 0000
                         *  &运算:  0  二进制:0000 0000
                         * 结论:元素位置在扩容后不会发生改变
                         */
                        if ((e.hash & oldCap) == 0) 
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        
                        /**
                         * e.hash = 18 二进制:0001 0010
                         * oldCap = 32 二进制:0001 0000
                         * &运算:  32 二进制:0001 0000
                         * 结论:元素位置在扩容后会发生改变,那么如何改变呢?
                         * newCap = 64 二进制:0010 0000
                         * 通过(newCap-1)&hash
                         * 即0001 1111 & 0001 0010 得0001 0010,32+2 = 34
                         */
                        else 
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        
                     while ((e = next) != null);
                    if (loTail != null) 
                        loTail.next = null;
                        /**
                         * 若(e.hash & oldCap) == 0,下标不变,将原表某个下标的元素放到扩容表同样
                         * 下标的位置上
                         */
                        newTab[j] = loHead;
                    
                    if (hiTail != null) 
                        hiTail.next = null;
                        /**
                         * 若(e.hash & oldCap) != 0,将原表某个下标的元素放到扩容表中
                         * [下标+增加的扩容量]的位置上
                         */
                        newTab[j + oldCap] = hiHead;
                    
                
            
        
    
    return newTab;

二. get方法

我们先简单说一下get(Object key)流程,通过传入的key通过hash()算法得到hash值,在通过(n - 1) & hash找到数组下标,如果数组下标所对应的node值正好key一样就返回,否则找到node.next找到下一个节点,看是否是treenNode,如果是,遍历红黑树找到对应node,如果不是遍历链表找到node。我们看一下源码

public V get(Object key) 
    Node<K,V> e;
    //先通过hash(key)找到hash值,然后调用getNode(hash,key)找到节点
    return (e = getNode(hash(key), key)) == null ? null : e.value;

/**
 * Implements Map.get and related methods
 *
 * @param hash hash for key
 * @param key the key
 * @return the node, or null if none
 */
final Node<K,V> getNode(int hash, Object key) 
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    //通过(n - 1) & hash找到数组对应位置上的第一个node
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) 
        //如果这个node刚好key值相同,直接返回
        if (first.hash == hash && 
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        //如果不相同就再往下找
        if ((e = first.next) != null) 
            //如果是treeNode,就遍历红黑树找到对应node
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            //如果是链表,遍历链表找到对应node
            do 
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
             while ((e = e.next) != null);
        
    
    return null;

这几个方法是核心,虽然HashMap还有很多常用方法,不过大体和这几个方法有关,或者实现逻辑相似,这里就不再多说了。

三. 总结

本文在上一章基本概念和底层结构的基础上,从源码的角度讲解了扩容机制以及存取原理,主要分析了put方法和get方法,put方法的核心为hash(),putVal(),resize(),get方法的核心为getNode(),若有不对之处,请批评指正,望共同进步,谢谢!

以上是关于HashMap原理 — 扩容机制及存取原理的主要内容,如果未能解决你的问题,请参考以下文章

高薪程序员&面试题精讲系列43之HashMap扩容机制的底层实现原理,HashMap扩容后是如何进行rehash操作的?

HashMap底层运行原理/底层数据结构/扩容机制/并发修改异常/fast-fail机制/优化使用

HashMap 扩容原理

HashMap 扩容原理

调试JDK源代码-一步一步看HashMap怎么Hash和扩容

调试JDK源代码-一步一步看HashMap怎么Hash和扩容