PointRCNN的loss计算与推理实现

Posted NNNNNathan

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PointRCNN的loss计算与推理实现相关的知识,希望对你有一定的参考价值。

在我前面的文章中,已经完成了PointRCNN的网络构建,链接在这:

PointRCNN论文和逐代码详解_NNNNNathan的博客-CSDN博客1、前言当前点云检测的常见方式分别有1、将点云划分成voxel来进行检测,典型的模型有VoxelNet、SECOND等;作然而本文的作者史博士提出这种方法会出现量化造成的信息损失。2、将点云投影到前视角或者鸟瞰图来来进行检测,包括MV3D、PIXOR、AVOD等检测模型;同时这类模型也会出现量化损失。3、将点云直接生成伪图片,然后使用2D的方式来进行处理,这主要是PointPillar。本文PointRCNN提出的方法,是一篇比较新颖的点云检测方法,与此前的检测模型不同,它直接根据点云分https://blog.csdn.net/qq_41366026/article/details/123214165?spm=1001.2014.3001.5501此处直接来完成网络的Loss计算部分和推理部分的解析。

注:OpenPCDet的损失实现已与原论文和原代码仓库不同,网络构建时候已经叙述过此问题。同时原来的实现中,PointRCNN是分阶段训练,先训练第一阶段之后在训练第二阶段网络。但是在OpenPCDet已经变成联合训练。

1、loss计算

1、第一阶段loss计算

第一阶段的损失包含了两部分:

1. 对该帧中所有的点云计算前背景分类loss

2. 对属于前景的点云计算box的回归loss

1.1 前背景分类loss计算

 由于在一帧点云中属于前背景点的数量差异较大,作者在此处使用了Focal Loss:

        

 其中alpha和gamma都与RetinaNet中保持一致,分别为0.25、2。

在计算前背景点的分类loss时,对每个GT enlarge 0.2米后才包括的点,类别置为-1,不计算这些点的分类loss,来提高网络的泛化性,网络构建已经有提到过。

代码在:pcdet/models/dense_heads/point_head_template.py

每个proposal与之对应的GT,
其中IOU大于0.6为前景,数值为1 
0.45-0.6忽略不计算loss,数值为-1 
0.45为背景,数值为0

    def get_cls_layer_loss(self, tb_dict=None):
        # 第一阶段点的GT类别
        point_cls_labels = self.forward_ret_dict['point_cls_labels'].view(-1)
        # 第一阶段点的预测类别
        point_cls_preds = self.forward_ret_dict['point_cls_preds'].view(-1, self.num_class)
        # 取出属于前景的点的mask,0为背景,1,2,3分别为前景,-1不关注
        positives = (point_cls_labels > 0)
        # 背景点分类权重置0
        negative_cls_weights = (point_cls_labels == 0) * 1.0
        # 前景点分类权重置0
        cls_weights = (negative_cls_weights + 1.0 * positives).float()
        # 使用前景点的个数来normalize,使得一批数据中每个前景点贡献的loss一样
        pos_normalizer = positives.sum(dim=0).float()
        # 正则化每个类别分类损失权重
        cls_weights /= torch.clamp(pos_normalizer, min=1.0)
        # 初始化分类的one-hot (batch * 16384, 4)
        one_hot_targets = point_cls_preds.new_zeros(*list(point_cls_labels.shape), self.num_class + 1)
        # 将目标标签转换为one-hot编码形式 https://blog.csdn.net/guofei_fly/article/details/104308528
        one_hot_targets.scatter_(-1, (point_cls_labels * (point_cls_labels >= 0).long()).unsqueeze(dim=-1).long(), 1.0)
        # 原来背景为[1, 0, 0, 0] 现在背景为[0, 0, 0]
        one_hot_targets = one_hot_targets[..., 1:]
        # 计算分类损失使用focal loss
        cls_loss_src = self.cls_loss_func(point_cls_preds, one_hot_targets, weights=cls_weights)
        # 各类别loss置求总数
        point_loss_cls = cls_loss_src.sum()
        # 分类损失权重
        loss_weights_dict = self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS
        # 分类损失乘以分类损失权重
        point_loss_cls = point_loss_cls * loss_weights_dict['point_cls_weight']

        if tb_dict is None:
            tb_dict = 
        # 使用.item()将tensor转换成标量,抛弃Backward属性,可以优化显存,
        tb_dict.update(
            'point_loss_cls': point_loss_cls.item(),
            'point_pos_num': pos_normalizer.item()
        )

        return point_loss_cls, tb_dict

Focal Loss计算代码在:pcdet/utils/loss_utils.py

    def sigmoid_cross_entropy_with_logits(input: torch.Tensor, target: torch.Tensor):
        """ PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits:
            max(x, 0) - x * z + log(1 + exp(-abs(x))) in
            https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits

        Args:
            input: (B, #anchors, #classes) float tensor.
                Predicted logits for each class
            target: (B, #anchors, #classes) float tensor.
                One-hot encoded classification targets

        Returns:
            loss: (B, #anchors, #classes) float tensor.
                Sigmoid cross entropy loss without reduction
        """
        loss = torch.clamp(input, min=0) - input * target + \\
               torch.log1p(torch.exp(-torch.abs(input)))
        return loss

    def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor):
        """
        Args:
            input: (B, #anchors, #classes) float tensor. eg:(4, 321408, 3)
                Predicted logits for each class :一个anchor会预测三种类别
            target: (B, #anchors, #classes) float tensor. eg:(4, 321408, 3)
                One-hot encoded classification targets,:真值
            weights: (B, #anchors) float tensor. eg:(4, 321408)
                Anchor-wise weights.
        Returns:
            weighted_loss: (B, #anchors, #classes) float tensor after weighting.
        """
        pred_sigmoid = torch.sigmoid(input)  # (batch_size, 321408, 3) f(x) = 1 / (1 + e^(-x))
        # 这里的加权主要是解决正负样本不均衡的问题:正样本的权重为0.25,负样本的权重为0.75
        # 交叉熵来自KL散度,衡量两个分布之间的相似性,针对二分类问题:
        # 合并形式: L = -(y * log(y^) + (1 - y) * log(1 - y^)) <-->
        # 分段形式:y = 1, L = -y * log(y^); y = 0, L = -(1 - y) * log(1 - y^)
        # 这两种形式等价,只要是0和1的分类问题均可以写成两种等价形式,针对focal loss做类似处理
        # 相对熵 = 信息熵 + 交叉熵, 且交叉熵是凸函数,求导时能够得到全局最优值-->(sigma(s)- y)x  
        # https://zhuanlan.zhihu.com/p/35709485
        alpha_weight = target * self.alpha + (1 - target) * (1 - self.alpha)  # (4, 321408, 3)
        pt = target * (1.0 - pred_sigmoid) + (1.0 - target) * pred_sigmoid
        focal_weight = alpha_weight * torch.pow(pt, self.gamma)

        # (batch_size, 321408, 3) 交叉熵损失的一种变形,具体推到参考上面的链接
        bce_loss = self.sigmoid_cross_entropy_with_logits(input, target)

        loss = focal_weight * bce_loss  # (batch_size, 321408, 3)

        if weights.shape.__len__() == 2 or \\
                (weights.shape.__len__() == 1 and target.shape.__len__() == 2):
            weights = weights.unsqueeze(-1)

        assert weights.shape.__len__() == loss.shape.__len__()
        # weights参数使用正anchor数目进行平均,使得每个样本的损失与样本中目标的数量无关
        return loss * weights

1.2. 前景点回归loss计算

        此处直接使用了SmoothL1损失计算前景点与GT直接的loss。对角度的编码使用了residual-cos-based的方法。所以这里的8个回归参数分别是:(x,y,z,l,w,h,cos(theta),sin(theta))

代码在:pcdet/models/dense_heads/point_head_template.py

    def get_box_layer_loss(self, tb_dict=None):
        # 使用GT来找出属于前景的点 (batch * 16384)
        pos_mask = self.forward_ret_dict['point_cls_labels'] > 0
        # 得到前景点的GT box参数 (batch * 16384, 8)
        point_box_labels = self.forward_ret_dict['point_box_labels']
        # 得到网络预测的前景点参数(batch * 16384, 8)
        point_box_preds = self.forward_ret_dict['point_box_preds']
        # 前景点的回归权重置1;背景点为0,不计算loss
        reg_weights = pos_mask.float()
        # 使用前景点的个数来normalize,使得一批数据中每个前景点贡献的loss一样
        pos_normalizer = pos_mask.sum().float()

        reg_weights /= torch.clamp(pos_normalizer, min=1.0)
        # 使用带权重的SmoothL1Loss来计算第一阶段中box的回归损失
        point_loss_box_src = self.reg_loss_func(
            point_box_preds[None, ...], point_box_labels[None, ...], weights=reg_weights[None, ...]
        )
        # 求和
        point_loss_box = point_loss_box_src.sum()
        # 回归loss权重
        loss_weights_dict = self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS
        # 回归损失乘回归权重
        point_loss_box = point_loss_box * loss_weights_dict['point_box_weight']
        # 使用.item()将tensor转换成标量,抛弃Backward属性,可以优化显存,
        if tb_dict is None:
            tb_dict = 
        tb_dict.update('point_loss_box': point_loss_box.item())

        return point_loss_box, tb_dict

SmoothL1损失计算在:pcdet/utils/loss_utils.py

    def smooth_l1_loss(diff, beta):
        # 如果beta非常小,则直接用abs计算,否则按照正常的Smooth L1 Loss计算
        if beta < 1e-5:
            loss = torch.abs(diff)
        else:
            n = torch.abs(diff)  # (batch_size, 321408, 7)
            # smoothL1公式,如上面所示 --> (batch_size, 321408, 7)
            loss = torch.where(n < beta, 0.5 * n ** 2 / beta, n - 0.5 * beta)

        return loss

    def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor = None):
        """
        Args:
            input: (B, #anchors, #codes) float tensor.
                Ecoded predicted locations of objects.
            target: (B, #anchors, #codes) float tensor.
                Regression targets.
            weights: (B, #anchors) float tensor if not None.

        Returns:
            loss: (B, #anchors) float tensor.
                Weighted smooth l1 loss without reduction.
        """
        # 如果target为nan,则等于input,否则等于target
        target = torch.where(torch.isnan(target), input, target)  # ignore nan targets# (batch_size, 321408, 7)

        diff = input - target  # (batch_size, 321408, 7)
        # code-wise weighting
        if self.code_weights is not None:
            diff = diff * self.code_weights.view(1, 1, -1)  #(batch_size, 321408, 7) 乘以box每一项的权重

        loss = self.smooth_l1_loss(diff, self.beta)

        # anchor-wise weighting
        if weights is not None:
            assert weights.shape[0] == loss.shape[0] and weights.shape[1] == loss.shape[1]
            # weights参数使用正anchor数目进行平均,使得每个样本的损失与样本中目标的数量无关
            loss = loss * weights.unsqueeze(-1)

        return loss

将第一阶段的的得到的loss相加,就得到第一阶段总的loss。

2、第二阶段loss计算

第一阶段的损失也包含了两部分:

1. 对ROI与GT的3D IOU大于0.6的ROI计算分类loss

2. 对ROI与GT的3D IOU大于0.55的ROI计算回归loss

2.1. 前景ROI置信度loss计算

        第二阶段的分类损失计算,用于预测前面ROI的类别置信度分数。每个proposal与之对应的GT, 其中IOU大于0.6为前景,数值为1 0.45-0.6忽略不计算loss,数值为-1 0.45为背景,数值为0。

        因此,此处直接使用BCE损失计算置信度分数。

    def get_box_cls_layer_loss(self, forward_ret_dict):
        loss_cfgs = self.model_cfg.LOSS_CONFIG
        # 每个proposal的预测置信度 shape (batch *128, 1)
        rcnn_cls = forward_ret_dict['rcnn_cls']
        """
        每个proposal与之对应的GT,
        其中IOU大于0.6为前景,数值为1 
        0.45-0.6忽略不计算loss,数值为-1 
        0.45为背景,数值为0
        rcnn_cls_labels shape (batch *128 ,)
        """
        rcnn_cls_labels = forward_ret_dict['rcnn_cls_labels'].view(-1)
        if loss_cfgs.CLS_LOSS == 'BinaryCrossEntropy':
            # shape (batch *128, 1)--> (batch *128, )
            rcnn_cls_flat = rcnn_cls.view(-1)
            batch_loss_cls = F.binary_cross_entropy(torch.sigmoid(rcnn_cls_flat), rcnn_cls_labels.float(),
                                                    reduction='none')
            # 生成前背景mask
            cls_valid_mask = (rcnn_cls_labels >= 0).float()
            # 求loss值,并根据前背景总数进行正则化
            rcnn_loss_cls = (batch_loss_cls * cls_valid_mask).sum() / torch.clamp(cls_valid_mask.sum(), min=1.0)
        elif loss_cfgs.CLS_LOSS == 'CrossEntropy':
            batch_loss_cls = F.cross_entropy(rcnn_cls, rcnn_cls_labels, reduction='none', ignore_index=-1)
            cls_valid_mask = (rcnn_cls_labels >= 0).float()
            rcnn_loss_cls = (batch_loss_cls * cls_valid_mask).sum() / torch.clamp(cls_valid_mask.sum(), min=1.0)
        else:
            raise NotImplementedError

        # 乘以分类损失权重
        rcnn_loss_cls = rcnn_loss_cls * loss_cfgs.LOSS_WEIGHTS['rcnn_cls_weight']

        tb_dict = 'rcnn_loss_cls': rcnn_loss_cls.item()
        return rcnn_loss_cls, tb_dict

2.2. 前景ROI box 回归loss计算

        这里需要ROI于GT的3D IOU大于0.55的ROI计算回归loss。在OpenPCDet中,PointRCNN的第二阶段的回归loss由两部分组成;其中第一部分为前景ROI与GT的每个参数的SmoothL1 Loss,第二部分为前景ROI与GT的Corner Loss。

1 SmoothL1 Loss

        直接对前景roi的微调结果和GT计算Loss,这里的角度残差计算直接使用SmoothL1函数计算,原因是因为被认为属于前景的ROI其与GT的3D IOU大于0.55,所以两个box之间的角度偏差在正负45度以内。

2 CORNER LOSS REGULARIZATION

        Corner Loss来源于F-PointNet,用于联合优化box的7个预测参数;在F-PointNet中指出,直接使用SmoothL1来回归box的参数,是直接对box的中心点,box的长宽高,box的朝向分别进行优化的。这样的优化可能会出现,box的中心点和长宽高已经可以十分准确的回归时,角度的预测却出现了偏差,导致3D IOU的降低的主要原因由角度预测错误引起。因此提出需要在(IOU metric)的度量方式下联合优化3D Box。为了解决这个问题,提出了一个正则化损失即Corner Loss,公式如下:

 Corner Loss是GTBox和预测Box的8个顶点的差值的和,因为一个box的顶点会被box的中心、box的长宽高、box的朝向所决定;因此 Corner Loss 可以作为这个多任务优化参数的正则项。

公式中,NS和NH分别代表了预测框和GT框,然后将box的坐标系都转换到以自身的中心坐标点上,P的i,j,k代表了box的不同类别的尺度,旋转角,和预定义的顶角顺序;在计算loss时,为了避免因为角度估计错误而导致的过大的正则化项,因此,会同时计算角度预测方向正确和完成相反的两种情况,并取其中最小值为该box的loss。δij为一个二维mask,用于选取需要计算loss的距离项。 

代码在:pcdet/models/roi_heads/roi_head_template.py

    def get_box_reg_layer_loss(self, forward_ret_dict):
        loss_cfgs = self.model_cfg.LOSS_CONFIG
        code_size = self.box_coder.code_size  # 7
        # (batch * 128, )#每帧点云中,有128个roi,只需要对iou大于0.55的roi计算loss
        reg_valid_mask = forward_ret_dict['reg_valid_mask'].view(
            -1)
        # 每个roi的gt_box  canonical坐标系下 (batch , 128, 7)
        gt_boxes3d_ct = forward_ret_dict['gt_of_rois'][..., 0:code_size]
        # 每个roi的gt_box 点云坐标系下 (batch * 128, 7)
        gt_of_rois_src = forward_ret_dict['gt_of_rois_src'][..., 0:code_size].view(-1, code_size)
        # 每个roi的调整参数 (rcnn_batch_size, C)  (batch * 128, 7)
        rcnn_reg = forward_ret_dict['rcnn_reg']
        # 每个roi的7个位置大小转向角参数 (batch , 128, 7)
        roi_boxes3d = forward_ret_dict['rois']
        rcnn_batch_size = gt_boxes3d_ct.view(-1, code_size).shape[0]  # 256
        # 获取前景mask
        fg_mask = (reg_valid_mask > 0)
        # 用于正则化
        fg_sum = fg_mask.long().sum().item()

        tb_dict = 

        if loss_cfgs.REG_LOSS == 'smooth-l1':
            rois_anchor = roi_boxes3d.clone().detach().view(-1, code_size)
            rois_anchor[:, 0:3] = 0
            rois_anchor[:, 6] = 0
            """
            编码GT和roi之间的回归残差  
            由于在第二阶段选出的每个roi都和GT的 3D_IOU大于0.55,
            所有roi_box和GT_box的角度差距只会在正负45度以内;
            因此,此处的角度直接使用SmoothL1进行回归,
            不再使用residual-cos-based的方法编码角度
            """
            reg_targets = self.box_coder.encode_torch(
                gt_boxes3d_ct.view(rcnn_batch_size, code_size), rois_anchor
            )
            # 计算第二阶段的回归残差损失 [B, M, 7]
            rcnn_loss_reg = self.reg_loss_func(
                rcnn_reg.view(rcnn_batch_size, -1).unsqueeze(dim=0),
                reg_targets.unsqueeze(dim=0),
            )
            # 这里只计算3D iou大于0.55的roi_box的loss
            rcnn_loss_reg = (rcnn_loss_reg.view(rcnn_batch_size, -1) * fg_mask.unsqueeze(dim=-1).float()).sum() / max(
                fg_sum, 1)
            rcnn_loss_reg = rcnn_loss_reg * loss_cfgs.LOSS_WEIGHTS['rcnn_reg_weight']
            tb_dict['rcnn_loss_reg'] = rcnn_loss_reg.item()

            # 此处使用了F-PointNet中的corner loss来联合优化roi_box的 中心位置、角度、大小
            if loss_cfgs.CORNER_LOSS_REGULARIZATION and fg_sum > 0:
                # TODO: NEED to BE CHECK
                # 取出对前景ROI的回归结果(num_of_fg_roi, 7)
                fg_rcnn_reg = rcnn_reg.view(rcnn_batch_size, -1)[fg_mask]
                # 取出所有前景ROI(num_of_fg_roi, 7)
                fg_roi_boxes3d = roi_boxes3d.view(-1, code_size)[fg_mask]

                # 前景ROI(1, num_of_fg_roi, 7)
                fg_roi_boxes3d = fg_roi_boxes3d.view(1, -1, code_size)
                # 前景ROI(1, num_of_fg_roi, 7)
                batch_anchors = fg_roi_boxes3d.clone().detach()
                # 取出前景ROI的角度
                roi_ry = fg_roi_boxes3d[:, :, 6].view(-1)
                # 取出前景ROI的xyz
                roi_xyz = fg_roi_boxes3d[:, :, 0:3].view(-1, 3)
                # 将前景ROI的xyz置0,转化到以自身中心为原点(CCS坐标系),
                # 用于解码第二阶段得到的回归预测结果
                batch_anchors[:, :, 0:3] = 0
                # 根据第二阶段的微调结果来解码出最终的预测结果
                rcnn_boxes3d = self.box_coder.decode_torch(
                    fg_rcnn_reg.view(batch_anchors.shape[0], -1, code_size), batch_anchors
                ).view(-1, code_size)

                # 将canonical坐标系下的角度转回到点云坐标系中 (num_of_fg_roi, 7)
                rcnn_boxes3d = common_utils.rotate_points_along_z(
                    rcnn_boxes3d.unsqueeze(dim=1), roi_ry
                ).squeeze(dim=1)
                # 将canonical坐标系的中心坐标转回原点云雷达坐标系中
                rcnn_boxes3d[:, 0:3] += roi_xyz

                # corner loss  根据前景的ROI的refinement结果和对应的GTBox 计算corner_loss
                loss_corner = loss_utils.get_corner_loss_lidar(
                    rcnn_boxes3d[:, 0:7],  # 前景的ROI的refinement结果
                    gt_of_rois_src[fg_mask][:, 0:7]  # GTBox
                )
                # 求出所有前景ROI corner loss的均值
                loss_corner = loss_corner.mean()
                loss_corner = loss_corner * loss_cfgs.LOSS_WEIGHTS['rcnn_corner_weight']
                # 将两个回归损失求和
                rcnn_loss_reg += loss_corner
                tb_dict['rcnn_loss_corner'] = loss_corner.item()
        else:
            raise NotImplementedError

        return rcnn_loss_reg, tb_dict
get_corner_loss_lidar代码在pcdet/utils/loss_utils.py
def get_corner_loss_lidar(pred_bbox3d: torch.Tensor, gt_bbox3d: torch.Tensor):
    """
    Args:
        pred_bbox3d: (N, 7) float Tensor.
        gt_bbox3d: (N, 7) float Tensor.

    Returns:
        corner_loss: (N) float Tensor.
    """
    assert pred_bbox3d.shape[0] == gt_bbox3d.shape[0]
    # 将预测box的7个坐标值转换到其在3D空间中对应的8个顶点
    pred_box_corners = box_utils.boxes_to_corners_3d(pred_bbox3d)
    # 将GTBox的7个坐标值转换到其在3D空间中对应的8个顶点
    gt_box_corners = box_utils.boxes_to_corners_3d(gt_bbox3d)
    # 再计算GTBox和预测的box的方向完全相反的情况
    gt_bbox3d_flip = gt_bbox3d.clone()
    gt_bbox3d_flip[:, 6] += np.pi
    gt_box_corners_flip = box_utils.boxes_to_corners_3d(gt_bbox3d_flip)
    #  所有的box和GT取距离最小值,防止因为距离相反产生较大的loss(N, 8)
    corner_dist = torch.min(torch.norm(pred_box_corners - gt_box_corners, dim=2),
                            torch.norm(pred_box_corners - gt_box_corners_flip, dim=2))
    # (N, 8)
    corner_loss = WeightedSmoothL1Loss.smooth_l1_loss(corner_dist, beta=1.0)
    # 对每个box的8个顶点的差距求均值
    return corner_loss.mean(dim=1)
boxes_to_corners_3d在pcdet/utils/box_utils.py
def boxes_to_corners_3d(boxes3d):
    """
        7 -------- 4
       /|         /|
      6 -------- 5 .
      | |        | |
      . 3 -------- 0
      |/         |/
      2 -------- 1
    Args:
        boxes3d:  (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center

    Returns:
    """
    boxes3d, is_numpy = common_utils.check_numpy_to_torch(boxes3d)
    # shape (8, 3)
    template = boxes3d.new_tensor((
        [1, 1, -1], [1, -1, -1], [-1, -1, -1], [-1, 1, -1],
        [1, 1, 1], [1, -1, 1], [-1, -1, 1], [-1, 1, 1],
    )) / 2

    corners3d = boxes3d[:, None, 3:6].repeat(1, 8, 1) * template[None, :, :]
    corners3d = common_utils.rotate_points_along_z(corners3d.view(-1, 8, 3), boxes3d[:, 6]).view(-1, 8, 3)
    corners3d += boxes3d[:, None, 0:3]

    return corners3d.numpy() if is_numpy else corners3d

至此,PointRCNN的所有loss计算就完成了,下面看看推理的实现。

2、网络推理实现

2.1 预测结果生成

        看回第二阶段中roi精调的代码,在预测阶段,需要根据前面提出的roi和第二阶段的精调结果生成最终的预测结果;分别是

batch_cls_preds (1,100,1) 每个ROI Box的置信度得分
batch_box_preds (1,100,7) 每个ROI Box的7个参数 (x,y,z,l,w,h,theta)

注:在推理阶段,batch size 默认为1,ROI的个数是100个。

代码在:pcdet/models/roi_heads/pointrcnn_head.py

    def forward(self, batch_dict):
        """
        Args:
            batch_dict:

        Returns:

        """
        # 生成proposal;在训练时,NMS保留512个结果,NMS_thresh为0.8;在测试时,NMS保留100个结果,NMS_thresh为0.85
        targets_dict = self.proposal_layer(
            batch_dict, nms_config=self.model_cfg.NMS_CONFIG['TRAIN' if self.training else 'TEST']
        )
        # 在训练模式时,需要为每个生成的proposal匹配到与之对应的GT_box
        if self.training:
            targets_dict = self.assign_targets(batch_dict)
        """

        略


        """
       
        # (total_rois, num_features, 1) --> (total_rois, 7)
        rcnn_reg = self.reg_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1)  # (B, C)
        
        if not self.training:
            """
            在此处生成最终的预测框
            """
            batch_cls_preds, batch_box_preds = self.generate_predicted_boxes(
                batch_size=batch_dict['batch_size'], rois=batch_dict['rois'], cls_preds=rcnn_cls, box_preds=rcnn_reg
            )

            batch_dict['batch_cls_preds'] = batch_cls_preds
            batch_dict['batch_box_preds'] = batch_box_preds
            batch_dict['cls_preds_normalized'] = False
        else:
            targets_dict['rcnn_cls'] = rcnn_cls
            targets_dict['rcnn_reg'] = rcnn_reg

            self.forward_ret_dict = targets_dict
        return batch_dict

生成最终预测box的函数为generate_predicted_boxes

代码在:pcdet/models/roi_heads/roi_head_template.py

    def generate_predicted_boxes(self, batch_size, rois, cls_preds, box_preds):
        """
        Args:
            batch_size:
            rois: (B, N, 7)
            cls_preds: (BN, num_class)
            box_preds: (BN, code_size)

        Returns:

        """
        # 回归编码的7个参数 x, y, z, l, w, h, θ
        code_size = self.box_coder.code_size
        # 对ROI的置信度分数预测batch_cls_preds : (B, num_of_roi, num_class or 1)   
        batch_cls_preds = cls_preds.view(batch_size, -1, cls_preds.shape[-1])
        # 对ROI Box的参数调整 batch_box_preds : (B, num_of_roi, 7)
        batch_box_preds = box_preds.view(batch_size, -1, code_size)
        # 取出每个roi的旋转角度,并拿出每个roi的xyz坐标,
        # local_roi用于生成每个点自己的bbox,
        # 因为之前的预测都是基于CCS坐标系下的,所以生成后需要将原xyz坐标上上去
        roi_ry = rois[:, :, 6].view(-1)
        roi_xyz = rois[:, :, 0:3].view(-1, 3)
        local_rois = rois.clone().detach()
        local_rois[:, :, 0:3] = 0
        # 得到CCS坐标系下每个ROI Box的经过refinement后的Box结果
        batch_box_preds = self.box_coder.decode_torch(batch_box_preds, local_rois).view(-1, code_size)

        # 完成CCS到点云坐标系的转换
        # 将canonical坐标系下的box角度转回到点云坐标系中   
        batch_box_preds = common_utils.rotate_points_along_z(
            batch_box_preds.unsqueeze(dim=1), roi_ry
        ).squeeze(dim=1)
        # 将canonical坐标系下的box的中心偏移估计加上roi的中心,转回到点云坐标系中
        batch_box_preds[:, 0:3] += roi_xyz
        batch_box_preds = batch_box_preds.view(batch_size, -1, code_size)
        # batch_cls_preds 每个ROI Box的置信度得分
        # batch_box_preds 每个ROI Box的7个参数 (x,y,z,l,w,h,theta)
        return batch_cls_preds, batch_box_preds

        decode_torch完成预测结果和原ROI Box解码。 这里的对角度的解码直接将refine的预测结果与ROI的角度相加,因为他们的误差在正负45度以内。

代码在:pcdet/utils/box_coder_utils.py

# batch_cls_preds 每个ROI Box的置信度得分
        # batch_box_preds 每个ROI Box的7个参数 (x,y,z,l,w,h,theta)

rotate_points_along_z为围绕偏航角(yaw)的旋转

代码在pcdet/utils/common_utils.py

def rotate_points_along_z(points, angle):
    """
    Args:
        points: (B, N, 3 + C)
        angle: (B), angle along z-axis, angle increases x ==> y
    Returns:

    """
    # 首先利用torch.from_numpy().float将numpy转化为torch
    points, is_numpy = check_numpy_to_torch(points)
    angle, _ = check_numpy_to_torch(angle)

    # 构造旋转矩阵batch个
    cosa = torch.cos(angle)
    sina = torch.sin(angle)
    zeros = angle.new_zeros(points.shape[0])
    ones = angle.new_ones(points.shape[0])
    rot_matrix = torch.stack((
        cosa,  sina, zeros,
        -sina, cosa, zeros,
        zeros, zeros, ones
    ), dim=1).view(-1, 3, 3).float()
    # 对点云坐标进行旋转
    points_rot = torch.matmul(points[:, :, 0:3], rot_matrix)
    # 将旋转后的点云与原始点云拼接
    points_rot = torch.cat((points_rot, points[:, :, 3:]), dim=-1)
    # 将点云转化为numpy格式,并返回
    return points_rot.numpy() if is_numpy else points_rot

2.2. 后处理

        后处理完成了最终100个ROI的NMS操作;同时需要注意的是,每个box的最终分类结果是由第一阶段得出,第二阶段的分类结果得到的是该类别属于前景或背景的置信度得分;此处实现与FRCNN不同,需注意。

代码在:pcdet/models/detectors/detector3d_template.py

    def post_processing(self, batch_dict):
        """
        Args:
            batch_dict:
                batch_size:
                batch_cls_preds: (B, num_boxes, num_classes | 1) or (N1+N2+..., num_classes | 1)
                                or [(B, num_boxes, num_class1), (B, num_boxes, num_class2) ...]
                multihead_label_mapping: [(num_class1), (num_class2), ...]
                batch_box_preds: (B, num_boxes, 7+C) or (N1+N2+..., 7+C)
                cls_preds_normalized: indicate whether batch_cls_preds is normalized
                batch_index: optional (N1+N2+...)
                has_class_labels: True/False
                roi_labels: (B, num_rois)  1 .. num_classes
                batch_pred_labels: (B, num_boxes, 1)
        Returns:

        """
        # post_process_cfg后处理参数,包含了nms类型、阈值、使用的设备、nms后最多保留的结果和输出的置信度等设置
        post_process_cfg = self.model_cfg.POST_PROCESSING
        # 推理默认为1
        batch_size = batch_dict['batch_size']
        # 保留计算recall的字典
        recall_dict = 
        # 预测结果存放在此
        pred_dicts = []
        # 逐帧进行处理
        for index in range(batch_size):
            if batch_dict.get('batch_index', None) is not None:
                assert batch_dict['batch_box_preds'].shape.__len__() == 2
                batch_mask = (batch_dict['batch_index'] == index)
            else:
                assert batch_dict['batch_box_preds'].shape.__len__() == 3
                # 得到当前处理的是第几帧
                batch_mask = index
            # box_preds shape (所有anchor的数量, 7)
            box_preds = batch_dict['batch_box_preds'][batch_mask]
            # 复制后,用于recall计算
            src_box_preds = box_preds

            if not isinstance(batch_dict['batch_cls_preds'], list):
                # (所有anchor的数量, 3)
                cls_preds = batch_dict['batch_cls_preds'][batch_mask]
                # 同上
                src_cls_preds = cls_preds
                assert cls_preds.shape[1] in [1, self.num_class]

                if not batch_dict['cls_preds_normalized']:
                    # 损失函数计算使用的BCE,所以这里使用sigmoid激活函数得到类别概率
                    cls_preds = torch.sigmoid(cls_preds)
            else:
                cls_preds = [x[batch_mask] for x in batch_dict['batch_cls_preds']]
                src_cls_preds = cls_preds
                if not batch_dict['cls_preds_normalized']:
                    cls_preds = [torch.sigmoid(x) for x in cls_preds]

            # 是否使用多类别的NMS计算,否,不考虑不同类别的物体会在3D空间中重叠
            if post_process_cfg.NMS_CONFIG.MULTI_CLASSES_NMS:
                if not isinstance(cls_preds, list):
                    cls_preds = [cls_preds]
                    multihead_label_mapping = [torch.arange(1, self.num_class, device=cls_preds[0].device)]
                else:
                    multihead_label_mapping = batch_dict['multihead_label_mapping']

                cur_start_idx = 0
                pred_scores, pred_labels, pred_boxes = [], [], []
                for cur_cls_preds, cur_label_mapping in zip(cls_preds, multihead_label_mapping):
                    assert cur_cls_preds.shape[1] == len(cur_label_mapping)
                    cur_box_preds = box_preds[cur_start_idx: cur_start_idx + cur_cls_preds.shape[0]]
                    cur_pred_scores, cur_pred_labels, cur_pred_boxes = model_nms_utils.multi_classes_nms(
                        cls_scores=cur_cls_preds, box_preds=cur_box_preds,
                        nms_config=post_process_cfg.NMS_CONFIG,
                        score_thresh=post_process_cfg.SCORE_THRESH
                    )
                    cur_pred_labels = cur_label_mapping[cur_pred_labels]
                    pred_scores.append(cur_pred_scores)
                    pred_labels.append(cur_pred_labels)
                    pred_boxes.append(cur_pred_boxes)
                    cur_start_idx += cur_cls_preds.shape[0]

                final_scores = torch.cat(pred_scores, dim=0)
                final_labels = torch.cat(pred_labels, dim=0)
                final_boxes = torch.cat(pred_boxes, dim=0)
            else:
                # 得到类别预测的最大概率,和对应的索引值
                cls_preds, label_preds = torch.max(cls_preds, dim=-1)
                if batch_dict.get('has_class_labels', False):
                    # 如果有roi_labels在里面字典里面,
                    # 使用第一阶段预测的label为改预测结果的分类类别
                    label_key = 'roi_labels' if 'roi_labels' in batch_dict else 'batch_pred_labels'
                    label_preds = batch_dict[label_key][index]
                else:
                    # 类别预测值加1
                    label_preds = label_preds + 1

                # 无类别NMS操作
                # selected : 返回了被留下来的anchor索引
                # selected_scores : 返回了被留下来的anchor的置信度分数
                selected, selected_scores = model_nms_utils.class_agnostic_nms(
                    # 每个anchor的类别预测概率和anchor回归参数
                    box_scores=cls_preds, box_preds=box_preds,
                    nms_config=post_process_cfg.NMS_CONFIG,
                    score_thresh=post_process_cfg.SCORE_THRESH
                )
                # 无此项
                if post_process_cfg.OUTPUT_RAW_SCORE:
                    max_cls_preds, _ = torch.max(src_cls_preds, dim=-1)
                    selected_scores = max_cls_preds[selected]

                # 得到最终类别预测的分数
                final_scores = selected_scores
                # 根据selected得到最终类别预测的结果
                final_labels = label_preds[selected]
                # 根据selected得到最终box回归的结果
                final_boxes = box_preds[selected]

            # 如果没有GT的标签在batch_dict中,就不会计算recall值
            recall_dict = self.generate_recall_record(
                box_preds=final_boxes if 'rois' not in batch_dict else src_box_preds,
                recall_dict=recall_dict, batch_index=index, data_dict=batch_dict,
                thresh_list=post_process_cfg.RECALL_THRESH_LIST
            )
            # 生成最终预测的结果字典
            record_dict = 
                'pred_boxes': final_boxes,
                'pred_scores': final_scores,
                'pred_labels': final_labels
            
            pred_dicts.append(record_dict)

        return pred_dicts, recall_dict

其中 无类别的NMS操作在:pcdet/models/model_utils/model_nms_utils.py

def class_agnostic_nms(box_scores, box_preds, nms_config, score_thresh=None):
    # 1.首先根据置信度阈值过滤掉部过滤掉大部分置信度低的box,加速后面的nms操作
    src_box_scores = box_scores
    if score_thresh is not None:
        # 得到类别预测概率大于score_thresh的mask
        scores_mask = (box_scores >= score_thresh)
        # 根据mask得到哪些anchor的类别预测大于score_thresh-->anchor类别
        box_scores = box_scores[scores_mask]
        # 根据mask得到哪些anchor的类别预测大于score_thresh-->anchor回归的7个参数
        box_preds = box_preds[scores_mask]

    # 初始化空列表,用来存放经过nms后保留下来的anchor
    selected = []
    # 如果有anchor的类别预测大于score_thresh的话才进行nms,否则返回空
    if box_scores.shape[0] > 0:
        # 这里只保留最大的K个anchor置信度来进行nms操作,
        # k取min(nms_config.NMS_PRE_MAXSIZE, box_scores.shape[0])的最小值
        box_scores_nms, indices = torch.topk(box_scores, k=min(nms_config.NMS_PRE_MAXSIZE, box_scores.shape[0]))

        # box_scores_nms只是得到了类别的更新结果;
        # 此处更新box的预测结果 根据tokK重新选取并从大到小排序的结果 更新boxes的预测
        boxes_for_nms = box_preds[indices]
        # 调用iou3d_nms_utils的nms_gpu函数进行nms,
        # 返回的是被保留下的box的索引,selected_scores = None
        # 根据返回索引找出box索引值
        keep_idx, selected_scores = getattr(iou3d_nms_utils, nms_config.NMS_TYPE)(
            boxes_for_nms[:, 0:7], box_scores_nms, nms_config.NMS_THRESH, **nms_config
        )
        selected = indices[keep_idx[:nms_config.NMS_POST_MAXSIZE]]

    if score_thresh is not None:
        # 如果存在置信度阈值,scores_mask是box_scores在src_box_scores中的索引,即原始索引
        original_idxs = scores_mask.nonzero().view(-1)
        # selected表示的box_scores的选择索引,经过这次索引,
        # selected表示的是src_box_scores被选择的box索引
        selected = original_idxs[selected]

    return selected, src_box_scores[selected]

最终得到每个预测Box的类别、置信度得分、box的7个参数。

3、PointRCNN的结果

PointRCNN原论文结果

PointRCNN在KITTI数据集测试结果(结果仅显示在kitti验证集moderate精度)

4、消融实验

 4.1 不同特征组合对refinement的影响

        在将CCS的坐标和每个点的池化后的特征输入送给refinement网络前,分别对不同的特征进行了组合操作;这里采用控制变量的思路,分别来测试不同的组合会在refinement网络中得到的效果。(所有的实验都是用相同的第一阶段提议网络)。结果如下图:

 1、如果送入refinement网络中没有将坐标系转换到CCS坐标系下,检测的结果十分糟糕,这说明了将该该proposal的点转换到CCS坐标系下可以极大程度的消除旋转和定位的的变化,降低网络学习的难度,同时也提高了refinement网络学习的效果。

2、如果将来自第一阶段的每个点经过PointNet++的特征进行移除的话,网络在中等难度的目标检测精度上下降了2.71%mAP,这说明了在第一阶段中每个点经过分割得到的特征是有效的。

3、对于每个点加上自身相对于相机的深度信息和CLS_SCORE点的分割特征对最终的结果影响较轻微,但是需要注意的是,加上来自相机的深度信息可以补全因为转换到CCS后每个点的深度信息丢失的情况,同时CLS_SCORE也可以在点的池化时候指明哪些是前景点。

4.2. 感知点云池化

        这里与PCDet的代码实现不同,论文中的实现是在点云池化的过程中,将池化的box范围进行了一定范围的扩展,结果也显示延长1米对最终的结果是最好的,因为每个proposal内就能拥有更多的周围环境信息,可以得到更准确的置信度估计和提高位置回归的准确度。但是如果延长的的太长,又会在ROI池化的过程中引入其它物体景点变成噪声,影响结果。

        注:PCDet的实现中,yaml文件中在此处并没有enlarge每个proposal,同时在实现中,因为作者已经将池化操作进行了编译,所以这里暂不做详细讨论。

4.3 3D BBox的损失函数

        在原论文中,作者对每个阶段的box回归和角度预测都是用的bin-based的方式进行的,详情可以看训练的文章内容。在PCDet的实现中,第一阶段和第二阶段box回归变成了smoothL1,角度回归变成了residual-cos-based,第二阶段的box由于是基于前面的proposal,每个proposal的3D IOU与GT Box大于0.55,它们之间的角度差仅在正负45度内,所以也直接使用了smoothL1作为损失函数;为了联合优化box和GT,还在第二阶段的box回归上加入了Corner loss进行正则化约束。

下图为不同回归函数的效果 

        至此PointRCNN的网络构建和推理就全部解析完了,之后会带来史帅另一个模型PVRCNN的解析。

参考文献或文章:

1、【3D目标检测】PointRCNN深度解读 - 知乎

2、论文阅读-PointRCNN+python3.5实现_有所为,有所成长-CSDN博客_pointrcnn代码

3、https://arxiv.org/abs/1812.04244

4、http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d

5、GitHub - open-mmlab/OpenPCDet: OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

以上是关于PointRCNN的loss计算与推理实现的主要内容,如果未能解决你的问题,请参考以下文章

什么是损失函数与平均误差算法分析

源码解读YOLO v3 训练 - 05 损失函数loss

Island loss损失函数的理解与实现

pytorch关注auc的损失

多分类SVM损失函数: Multiclass SVM loss

谷歌机器学习速成课程---3降低损失 (Reducing Loss):梯度下降法