一文轻松掌握深度学习框架中的einsum

Posted OneFlow深度学习框架

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一文轻松掌握深度学习框架中的einsum相关的知识,希望对你有一定的参考价值。

导语:本文主要介绍了如何理解 PyTorch 中的爱因斯坦求和 (einsum) ,并结合实际例子讲解和 PyTorch C++实现代码解读,希望读者看完本文后掌握 einsum 的基本用法。

撰文|梁德澎

原文首发于公众号GiantpandaCV


1

爱因斯坦求和约定

爱因斯坦求和约定(einsum)提供了一套既简洁又优雅的规则,可实现包括但不限于:向量内积,向量外积,矩阵乘法,转置和张量收缩(tensor contraction)等张量操作,熟练运用 einsum 可以很方便地实现复杂的张量操作,而且不容易出错。

三条基本规则

首先看下 einsum 实现矩阵乘法的例子:

a = torch.rand(2,3)
b = torch.rand(3,4)
c = torch.einsum("ik,kj->ij", [a, b])
# 等价操作 torch.mm(a, b)

其中需要重点关注的是 einsum 的第一个参数 "ik,kj->ij",该字符串(下文以 equation 表示)表示了输入和输出张量的维度。equation 中的箭头左边表示输入张量,以逗号分割每个输入张量,箭头右边则表示输出张量。表示维度的字符只能是26个英文字母 'a' - 'z'。

而 einsum 的第二个参数表示实际的输入张量列表,其数量要与 equation 中的输入数量对应。同时对应每个张量的 子 equation 的字符个数要与张量的真实维度对应,比如 "ik,kj->ij" 表示输入和输出张量都是两维的。

equation 中的字符也可以理解为索引,就是输出张量的某个位置的值,是怎么从输入张量中得到的,比如上面矩阵乘法的输出 c 的某个点 c[i, j] 的值是通过 a[i, k] 和 b[k, j] 沿着 k 这个维度做内积得到的。

接着介绍两个基本概念,自由索引(Free indices)和求和索引(Summation indices):

  • 自由索引,出现在箭头右边的索引,比如上面的例子就是 i 和 j;

  • 求和索引,只出现在箭头左边的索引,表示中间计算结果需要这个维度上求和之后才能得到输出,比如上面的例子就是 k。

接着是介绍三条基本规则:

  • 规则一:equation 箭头左边,在不同输入之间重复出现的索引表示,把输入张量沿着该维度做乘法操作,比如还是以上面矩阵乘法为例, "ik,kj->ij",k 在输入中重复出现,所以就是把 a 和 b 沿着 k 这个维度作相乘操作;

  • 规则二:只出现在 equation 箭头左边的索引,表示中间计算结果需要在这个维度上求和,也就是上面提到的求和索引;

  • 规则三:equation 箭头右边的索引顺序可以是任意的,比如上面的 "ik,kj->ij" 如果写成 "ik,kj->ji",那么就是返回输出结果的转置,用户只需要定义好索引的顺序,转置操作会在 einsum 内部完成。

特殊规则

特殊规则有两条:

  • equation 可以不写包括箭头在内的右边部分,那么在这种情况下,输出张量的维度会根据默认规则推导。就是把输入中只出现一次的索引取出来,然后按字母表顺序排列,比如上面的矩阵乘法 "ik,kj->ij" 也可以简化为 "ik,kj",根据默认规则,输出就是 "ij" 与原来一样;

  • equation 中支持 "..." 省略号,用于表示用户并不关心的索引,比如只对一个高维张量的最后两维做转置可以这么写:

a = torch.randn(2,3,5,7,9)
# i = 7, j = 9
b = torch.einsum('...ij->...ji', [a])


2

实际例子解读

接下来将展示13个具体的例子,在这些例子中会将 PyTorch einsum 与对应的 PyTorch 张量接口和 Python 简单的循环展开实现做对比,希望读者看完这些例子之后能轻松掌握 einsum 的基本用法。

实验代码github链接:

https://github.com/Ldpe2G/CodingForFun/tree/master/einsum_ex

1.提取矩阵对角线元素

import torch
import numpy as np

a = torch.arange(9).reshape(3, 3)
# i = 3
torch_ein_out = torch.einsum('ii->i', [a]).numpy()
torch_org_out = torch.diagonal(a, 0).numpy()

np_a = a.numpy()
# 循环展开实现
np_out = np.empty((3,), dtype=np.int32)
# 自由索引外循环
for i in range(0, 3):
    # 求和索引内循环
    # 这个例子并没有求和索引,
    # 所以相当于是1
    sum_result = 0
    for inner in range(0, 1):
        sum_result += np_a[i, i]
    np_out[i] = sum_result

print("input:\\n", np_a)
print("torch ein out: \\n", torch_ein_out)
print("torch org out: \\n", torch_org_out)
print("numpy out: \\n", np_out)
print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
print("is torch_org_out == torch_ein_out ?", np.allclose(torch_ein_out, torch_org_out))

# 终端打印结果
# input:
#  [[0 1 2]
#  [3 4 5]
#  [6 7 8]]
# torch ein out:
#  [0 4 8]
# torch org out:
#  [0 4 8]
# numpy out:
#  [0 4 8]
# is np_out == torch_ein_out ? True
# is torch_org_out == torch_ein_out ? True

2. 矩阵转置

import torch
import numpy as np

a = torch.arange(6).reshape(2, 3)
# i = 2, j = 3
torch_ein_out = torch.einsum('ij->ji', [a]).numpy()
torch_org_out = torch.transpose(a, 0, 1).numpy()

np_a = a.numpy()
# 循环展开实现
np_out = np.empty((3, 2), dtype=np.int32)
# 自由索引外循环
for j in range(0, 3):
    for i in range(0, 2):
        # 求和索引内循环
        # 这个例子并没有求和索引
        # 所以相当于是1
        sum_result = 0
        for inner in range(0, 1):
            sum_result += np_a[i, j]
        np_out[j, i] = sum_result

print("input:\\n", np_a)
print("torch ein out: \\n", torch_ein_out)
print("torch org out: \\n", torch_org_out)
print("numpy out: \\n", np_out)
print("is np_out == torch_org_out ?", np.allclose(torch_ein_out, np_out))
print("is torch_ein_out == torch_org_out ?", np.allclose(torch_ein_out, torch_org_out))

# 终端打印结果
# input:
#  [[0 1 2]
#  [3 4 5]]
# torch ein out:
#  [[0 3]
#  [1 4]
#  [2 5]]
# torch org out:
#  [[0 3]
#  [1 4]
#  [2 5]]
# numpy out:
#  [[0 3]
#  [1 4]
#  [2 5]]
# is np_out == torch_org_out ? True
# is torch_ein_out == torch_org_out ? True

3. permute 高维张量转置

import torch
import numpy as np

a = torch.randn(2,3,5,7,9)
# i = 7, j = 9
torch_ein_out = torch.einsum('...ij->...ji', [a]).numpy()
torch_org_out = a.permute(0, 1, 2, 4, 3).numpy()

np_a = a.numpy()
# 循环展开实现
np_out = np.empty((2,3,5,9,7), dtype=np.float32)
# 自由索引外循环
for j in range(0, 9):
    for i in range(0, 7):
        # 求和索引内循环
        # 这个例子没有求和索引
        sum_result = 0
        for inner in range(0, 1):
            sum_result += np_a[..., i, j]
        np_out[..., j, i] = sum_result

print("is np_out == torch_org_out ?", np.allclose(torch_ein_out, np_out))
print("is torch_ein_out == torch_org_out ?", np.allclose(torch_ein_out, torch_org_out))

# 终端打印结果
# is np_out == torch_org_out ? True
# is torch_ein_out == torch_org_out ? True

4. reduce sum

import torch
import numpy as np

a = torch.arange(6).reshape(2, 3)
# i = 2, j = 3
torch_ein_out = torch.einsum('ij->', [a]).numpy()
torch_org_out = torch.sum(a).numpy()

np_a = a.numpy()
# 循环展开实现
np_out = np.empty((1, ), dtype=np.int32)
# 自由索引外循环
# 这个例子中没有自由索引
# 相当于所有维度都加一起
for o in range(0 ,1):
    # 求和索引内循环
    # 这个例子中,i 和 j
    # 都是求和索引
    sum_result = 0
    for i in range(0, 2):
        for j in range(0, 3):
            sum_result += np_a[i, j]
    np_out[o] = sum_result

print("input:\\n", np_a)
print("torch ein out: \\n", torch_ein_out)
print("torch org out: \\n", torch_org_out)
print("numpy out: \\n", np_out)
print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
print("is torch_org_out == torch_ein_out ?", np.allclose(torch_ein_out, torch_org_out))

# 终端打印结果
# input:
#  [[0 1 2]
#  [3 4 5]]
# torch ein out:
#  15
# torch org out:
#  15
# numpy out:
#  [15]
# is np_out == torch_ein_out ? True
# is torch_org_out == torch_ein_out ? True

5.矩阵按列求和

import torch
import numpy as np

a = torch.arange(6).reshape(2, 3)
# i = 2, j = 3
torch_ein_out = torch.einsum('ij->j', [a]).numpy()
torch_org_out = torch.sum(a, dim=0).numpy()

np_a = a.numpy()
# 循环展开实现
np_out = np.empty((3, ), dtype=np.int32)
# 自由索引外循环
# 这个例子中是 j
for j in range(0, 3):
    # 求和索引内循环
    # 这个例子中是 i
    sum_result = 0
    for i in range(0, 2):
        sum_result += np_a[i, j]
    np_out[j] = sum_result

print("input:\\n", np_a)
print("torch ein out: \\n", torch_ein_out)
print("torch org out: \\n", torch_org_out)
print("numpy out: \\n", np_out)
print("is np_out == torch_ein_out ?", np.allclose(torch_org_out, np_out))
print("is torch_org_out == torch_ein_out ?", np.allclose(torch_org_out, torch_ein_out))

# 终端打印输出
# input:
#  [[0 1 2]
#  [3 4 5]]
# torch ein out:
#  [3 5 7]
# torch org out:
#  [3 5 7]
# numpy out:
#  [3 5 7]
# is np_out == torch_ein_out ? True
# is torch_org_out == torch_ein_out ? True

6. 矩阵向量乘法

import torch
import numpy as np

a = torch.arange(6).reshape(2, 3)
b = torch.arange(3)
# i = 2, k = 3
torch_ein_out = torch.einsum('ik,k->i', [a, b]).numpy()
# 等价形式,可以省略箭头和输出
torch_ein_out2 = torch.einsum('ik,k', [a, b]).numpy()
torch_org_out = torch.mv(a, b).numpy()

np_a = a.numpy()
np_b = b.numpy()
# 循环展开实现
np_out = np.empty((2, ), dtype=np.int32)
# 自由索引外循环
# 这个例子是 i
for i in range(0, 2):
    # 求和索引内循环
    # 这个例子中是 k
    sum_result = 0
    for k in range(0, 3):
        sum_result += np_a[i, k] * np_b[k]
    np_out[i] = sum_result

print("matrix a:\\n", np_a)
print("vector b:\\n", np_b)
print("torch ein out: \\n", torch_ein_out)
print("torch ein out2: \\n", torch_ein_out2)
print("torch org out: \\n", torch_org_out)
print("numpy out: \\n", np_out)
print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
print("is torch_ein_out2 == torch_ein_out ?", np.allclose(torch_ein_out2, torch_ein_out))
print("is torch_org_out == torch_ein_out ?", np.allclose(torch_org_out, torch_ein_out))

# 终端打印输出
# matrix a:
#  [[0 1 2]
#  [3 4 5]]
# vector b:
#  [0 1 2]
# torch ein out:
#  [ 5 14]
# torch ein out2:
#  [ 5 14]
# torch org out:
#  [ 5 14]
# numpy out:
#  [ 5 14]
# is np_out == torch_ein_out ? True
# is torch_ein_out2 == torch_ein_out ? True
# is torch_org_out == torch_ein_out ? True

7. 矩阵乘法

import torch
import numpy as np

a = torch.arange(6).reshape(2, 3)
b = torch.arange(15).reshape(3, 5)
# i = 2, k = 3, j = 5
torch_ein_out = torch.einsum('ik,kj->ij', [a, b]).numpy()
# 等价形式,可以省略箭头和输出
torch_ein_out2 = torch.einsum('ik,kj', [a, b]).numpy() 
torch_org_out = torch.mm(a, b).numpy()

np_a = a.numpy()
np_b = b.numpy()
# 循环展开实现
np_out = np.empty((2, 5), dtype=np.int32)
# 自由索引外循环
# 这个例子是 i 和 j
for i in range(0, 2):
    for j in range(0, 5):
        # 求和索引内循环
        # 这个例子是 k
        sum_result = 0
        for k in range(0, 3):
            sum_result += np_a[i, k] * np_b[k, j]
        np_out[i, j] = sum_result

print("matrix a:\\n", np_a)
print("matrix b:\\n", np_b)
print("torch ein out: \\n", torch_ein_out)
print("torch ein out2: \\n", torch_ein_out2)
print("torch org out: \\n", torch_org_out)
print("numpy out: \\n", np_out)
print("is numpy == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
print("is torch_ein_out2 == torch_ein_out ?", np.allclose(torch_ein_out2, torch_ein_out))
print("is torch_org_out == torch_ein_out ?", np.allclose(torch_org_out, torch_ein_out))

# 终端打印输出
# matrix a:
#  [[0 1 2]
#  [3 4 5]]
# matrix b:
#  [[ 0  1  2  3  4]
#  [ 5  6  7  8  9]
#  [10 11 12 13 14]]
# torch ein out:
#  [[ 25  28  31  34  37]
#  [ 70  82  94 106 118]]
# torch ein out2:
#  [[ 25  28  31  34  37]
#  [ 70  82  94 106 118]]
# torch org out:
#  [[ 25  28  31  34  37]
#  [ 70  82  94 106 118]]
# numpy out:
#  [[ 25  28  31  34  37]
#  [ 70  82  94 106 118]]
# is numpy == torch_ein_out ? True
# is torch_ein_out2 == torch_ein_out ? True
# is torch_org_out == torch_ein_out ? True

8. 向量内积

import torch
import numpy as np

a = torch.arange(3)
b = torch.arange(3, 6) # [3, 4, 5]
# i = 3
torch_ein_out = torch.einsum('i,i->', [a, b]).numpy()
# 等价形式,可以省略箭头和输出
torch_ein_out2 = torch.einsum('i,i', [a, b]).numpy()
torch_org_out = torch.dot(a, b).numpy()

np_a = a.numpy()
np_b = b.numpy() 
# 循环展开实现
np_out = np.empty((1, ), dtype=np.int32)
# 自由索引外循环
# 这个例子没有自由索引
for o in range(0, 1):
    # 求和索引内循环
    # 这个例子是 i
    sum_result = 0
    for i in range(0, 3):
        sum_result += np_a[i] * np_b[i]
    np_out[o] = sum_result

print("vector a:\\n", np_a)
print("vector b:\\n", np_b)
print("torch ein out: \\n", torch_ein_out)
print("torch ein out2: \\n", torch_ein_out2)
print("torch org out: \\n", torch_org_out)
print("numpy out: \\n", np_out)
print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
print("is torch_ein_out2 == torch_ein_out ?", np.allclose(torch_ein_out2, torch_ein_out))
print("is torch_org_out == torch_ein_out ?", np.allclose(torch_org_out, torch_ein_out))

# 终端打印输出
# vector a:
#  [0 1 2]
# vector b:
#  [3 4 5]
# torch ein out:
#  14
# torch ein out2:
#  14
# torch org out:
#  14
# numpy out:
#  [14]
# is np_out == torch_ein_out ? True
# is torch_ein_out2 == torch_ein_out ? True
# is torch_org_out == torch_ein_out ? True

9. 矩阵元素对应相乘并求reduce sum

import torch
import numpy as np

a = torch.arange(6).reshape(2, 3)
b = torch.arange(6,12).reshape(2, 3)
# i = 2, j = 3
torch_ein_out = torch.einsum('ij,ij->', [a, b]).numpy()
# 等价形式,可以省略箭头和输出
torch_ein_out2 = torch.einsum('ij,ij', [a, b]).numpy()
torch_org_out = (a * b).sum().numpy()

np_a = a.numpy()
np_b = b.numpy() 
# 循环展开实现
np_out = np.empty((1, ), dtype=np.int32)
# 自由索引外循环
# 这个例子没有自由索引
for o in range(0, 1):
    # 求和索引内循环
    # 这个例子是 i 和 j
    sum_result = 0
    for i in range(0, 2):
        for j in range(0, 3):
            sum_result += np_a[i,j] * np_b[i,j]
    np_out[o] = sum_result

print("matrix a:\\n", np_a)
print("matrix b:\\n", np_b)
print("torch ein out: \\n", torch_ein_out)
print("torch ein out2: \\n", torch_ein_out2)
print("torch org out: \\n", torch_org_out)
print("numpy out: \\n", np_out)
print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
print("is torch_ein_out2 == torch_ein_out ?", np.allclose(torch_ein_out2, torch_ein_out))
print("is torch_org_out == torch_ein_out ?", np.allclose(torch_org_out, torch_ein_out))

# 终端打印输出
# matrix a:
#  [[0 1 2]
#  [3 4 5]]
# matrix b:
#  [[ 6  7  8]
#  [ 9 10 11]]
# torch ein out:
#  145
# torch ein out2:
#  145
# torch org out:
#  145
# numpy out:
#  [145]
# is np_out == torch_ein_out ? True
# is torch_ein_out2 == torch_ein_out ? True
# is torch_org_out == torch_ein_out ? True

10. 向量外积

import torch
import numpy as np

a = torch.arange(3)
b = torch.arange(3,7)  # [3, 4, 5, 6]
# i = 3, j = 4
torch_ein_out = torch.einsum('i,j->ij', [a, b]).numpy()
# 等价形式,可以省略箭头和输出
torch_ein_out2 = torch.einsum('i,j', [a, b]).numpy()
torch_org_out = torch.outer(a, b).numpy()

np_a = a.numpy()
np_b = b.numpy() 
# 循环展开实现
np_out = np.empty((3, 4), dtype=np.int32)
# 自由索引外循环
# 这个例子是 i 和 j
for i in range(0, 3):
    for j in range(0, 4):
        # 求和索引内循环
        # 这个例子没有求和索引
        sum_result = 0
        for inner in range(0, 1):
            sum_result += np_a[i] * np_b[j]
        np_out[i, j] = sum_result

print("vector a:\\n", np_a)
print("vector b:\\n", np_b)
print("torch ein out: \\n", torch_ein_out)
print("torch ein out2: \\n", torch_ein_out2)
print("torch org out: \\n", torch_org_out)
print("numpy out: \\n", np_out)
print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
print("is torch_ein_out2 == torch_ein_out ?", np.allclose(torch_ein_out2, torch_ein_out))
print("is torch_org_out == torch_ein_out ?", np.allclose(torch_org_out, torch_ein_out))

# 终端打印输出
# vector a:
#  [0 1 2]
# vector b:
#  [3 4 5 6]
# torch ein out:
#  [[ 0  0  0  0]
#  [ 3  4  5  6]
#  [ 6  8 10 12]]
# torch ein out2:
#  [[ 0  0  0  0]
#  [ 3  4  5  6]
#  [ 6  8 10 12]]
# torch org out:
#  [[ 0  0  0  0]
#  [ 3  4  5  6]
#  [ 6  8 10 12]]
# numpy out:
#  [[ 0  0  0  0]
#  [ 3  4  5  6]
#  [ 6  8 10 12]]
# is np_out == torch_ein_out ? True
# is torch_ein_out2 == torch_ein_out ? True
# is torch_org_out == torch_ein_out ? True

11. batch 矩阵乘法

import torch
import numpy as np

a = torch.randn(2,3,5)
b = torch.randn(2,5,4)
# i = 2, j = 3, k = 5, l = 4
torch_ein_out = torch.einsum('ijk,ikl->ijl', [a, b]).numpy()
torch_org_out = torch.bmm(a, b).numpy() 

np_a = a.numpy()
np_b = b.numpy()
# 循环展开实现
np_out = np.empty((2, 3, 4), dtype=np.float32)
# 自由索引外循环
# 这个例子是 i,j和l
for i in range(0, 2):
    for j in range(0, 3):
        for l in range(0, 4):
            # 求和索引内循环
            # 这个例子是 k
            sum_result = 0
            for k in range(0, 5):
                sum_result += np_a[i, j, k] * np_b[i, k, l]
            np_out[i, j, l] = sum_result

print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
print("is torch_org_out == torch_ein_out ?", np.allclose(torch_ein_out, torch_org_out))

# 终端打印输出
# is np_out == torch_ein_out ? True
# is torch_org_out == torch_ein_out ? True

12. 张量收缩(tensor contraction)

import torch
import numpy as np

a = torch.randn(2,3,5,7)
b = torch.randn(11,13,3,17,5)
# p = 2, q = 3, r = 5, s = 7
# t = 11, u = 13, v = 17, r = 5
torch_ein_out = torch.einsum('pqrs,tuqvr->pstuv', [a, b]).numpy()
torch_org_out = torch.tensordot(a, b, dims=([1, 2], [2, 4])).numpy()

np_a = a.numpy()
np_b = b.numpy()
# 循环展开实现
np_out = np.empty((2, 7, 11, 13, 17), dtype=np.float32)
# 自由索引外循环
# 这里就是 p,s,t,u和v
for p in range(0, 2):
    for s in range(0, 7):
        for t in range(0, 11):
            for u in range(0, 13):
                for v in range(0, 17):
                    # 求和索引内循环
                    # 这里是 q和r
                    sum_result = 0
                    for q in range(0, 3):
                        for r in range(0, 5):
                            sum_result += np_a[p, q, r, s] * np_b[t, u, q, v, r]
                    np_out[p, s, t, u, v] = sum_result

print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out, atol=1e-6))
print("is torch_ein_out == torch_org_out ?", np.allclose(torch_ein_out, torch_org_out, atol=1e-6))

# 终端打印输出
# is np_out == torch_ein_out ? True
# is torch_ein_out == torch_org_out ? True

13. 二次变换(bilinear transformation)

import torch
import numpy as np

a = torch.randn(2,3)
b = torch.randn(5,3,7)
c = torch.randn(2,7)
# i = 2, k = 3, j = 5, l = 7
torch_ein_out = torch.einsum('ik,jkl,il->ij', [a, b, c]).numpy()
m = torch.nn.Bilinear(3, 7, 5, bias=False)
m.weight.data = b
torch_org_out = m(a, c).detach().numpy()

np_a = a.numpy()
np_b = b.numpy()
np_c = c.numpy()
# 循环展开实现
np_out = np.empty((2, 5), dtype=np.float32)
# 自由索引外循环
# 这里是 i 和 j
for i in range(0, 2):
    for j in range(0, 5):
        # 求和索引内循环
        # 这里是 k 和 l
        sum_result = 0
        for k in range(0, 3):
            for l in range(0, 7):
                sum_result += np_a[i, k] * np_b[j, k, l] * np_c[i, l]
        np_out[i, j] = sum_result

# print("matrix a:\\n", np_a)
# print("matrix b:\\n", np_b)
print("torch ein out: \\n", torch_ein_out)
print("torch org out: \\n", torch_org_out)
print("numpy out: \\n", np_out)
print("is np_out == torch_ein_out ?", np.allclose(torch_ein_out, np_out))
print("is torch_org_out == torch_ein_out ?", np.allclose(torch_ein_out, torch_org_out))

# 终端打印输出
# torch ein out:
#  [[-2.9185116   0.17024004 -0.43915534  1.5860008  10.016678  ]
#  [-0.48688257 -3.5114982  -0.7543343  -0.46790922  1.4816089 ]]
# torch org out:
#  [[-2.9185116   0.17024004 -0.43915534  1.5860008  10.016678  ]
#  [-0.48688257 -3.5114982  -0.7543343  -0.46790922  1.4816089 ]]
# numpy out:
#  [[-2.9185114   0.17023998 -0.4391551   1.5860008  10.016678  ]
#  [-0.4868826  -3.5114982  -0.7543342  -0.4679092   1.4816089 ]]
# is np_out == torch_ein_out ? True
# is torch_org_out == torch_ein_out ? True

从上面的13个例子可以看出,只要确定了自由索引和求和索引,einsum 的输出计算都可以用一套比较通用的多层循来实现,外层的循环对应自由索引,内层循环对应求和索引。

3

PyTorch einsum 实现简要解读

C++ 代码解读

Github 代码链接: 

https://github.com/pytorch/pytorch/blob/53596cdb7359116e8c8ae18ffef06f2677ad1296/aten/src/ATen/native/Linear.cpp#L148

我只读懂了大概的实现思路,然后按照我自己的理解添加了注释(仅供参考):

// 为了方便理解,我简化了大部分代码,
// 并把对于 "..." 省略号的处理去掉了
/** 
 * 代码实现主要分为3大步:
 * 1. 解析 equation,分别得到输入和输出对应的字符串
 * 2. 补全输出和输入张量的维度,通过 permute 操作对齐输入和输出的维度
 * 3. 将维度对齐之后的输入张量相乘,然后根据求和索引累加
*/
Tensor einsum(std::string equation, TensorList operands) 
  // ......
  // 把 equation 按照箭头分割
  // 得到箭头左边输入的部分
  const auto arrow_pos = equation.find("->");
  const auto lhs = equation.substr(0, arrow_pos);
  // 获取输入操作数个数
  const auto num_ops = operands.size();

  // 下面循环主要作用是解析 equation 左边输入部分,
  // 按 ',' 号分割得到每个输入张量对应的字符串,
  // 并把并把每个 char 字符转成 int, 范围 [0, 25] 
  // 新建 vector 保存每个输入张量对应的字符数组
  std::vector<std::vector<int>> op_labels(num_ops);
  std::size_t curr_op = 0;
  for (auto i = decltype(lhs.length())0; i < lhs.length(); ++i) 
    switch (lhs[i]) 
      // ......
      case ',': 
        // 遇到逗号,接下来解析下一个输入张量的字符串
        ++curr_op;
        // ......
        break;
      default:
        // ......
        // 把 char 字符转成 int 
        op_labels[curr_op].push_back(lhs[i] - 'a');
    
  

  // TOTAL_LABELS = 26
  constexpr int TOTAL_LABELS = 'z' - 'a' + 1;
  std::vector<int> label_count(TOTAL_LABELS, 0); 
  // 遍历所有输入操作数
  // 统计 equation 中 'a' - 'z' 每个字符的出现次数
  for(const auto i : c10::irange(num_ops)) 
    const auto labels = op_labels[i];
    for (const auto& label : labels) 
      // ......
      ++label_count[label];
    
    // ......
  

  // 创建一个 vector 用于保存 equation 
  // 箭头右边输出的字符到索引的映射
  std::vector<int64_t> label_perm_index(TOTAL_LABELS, -1);

  int64_t perm_index = 0;
  // ......
  // 接下来解析输出字符串
  if (arrow_pos == std::string::npos) 
    // 处理用户省略了箭头的情况,
    // ......
   else 
    // 一般情况
    // 得到箭头右边的输出
    const auto rhs = equation.substr(arrow_pos + 2);
    // 遍历输出字符串并解析
    for (auto i = decltype(rhs.length())0; i < rhs.length(); ++i) 
      switch (rhs[i]) 
        // ......
        default:
          // ......
          const auto label = rhs[i] - 'a';
          // ......
          // 建立字符到索引的映射,perm_index从0开始
          label_perm_index[label] = perm_index++;
      
    
  

  // 保存原始的输出维度大小
  const int64_t out_size = perm_index;
  // 对齐输出张量的维度,使得对齐之后的维度等于
  // 自由索引加上求和索引的个数
  // 对输出补全省略掉的求和索引
  // 也就是在输入等式中出现,但是没有在输出等式中出现的字符
  for (const auto label : c10::irange(TOTAL_LABELS)) 
    if (label_count[label] > 0 && label_perm_index[label] == -1) 
      label_perm_index[label] = perm_index++;
    
  

  // 对所有输入张量,同样补齐维度至与输出维度大小相同
  // 最后对输入做 permute 操作,使得输入张量的每一维
  // 与输出张量的每一维能对上
  std::vector<Tensor> permuted_operands;
  for (const auto i: c10::irange(num_ops)) 
    // 保存输入张量最终做 permute 时候的维度映射
    std::vector<int64_t> perm_shape(perm_index, -1);
    Tensor operand = operands[i];
    // 取输入张量对应的 equation
    const auto labels = op_labels[i];
    std::size_t j = 0;
    for (const auto& label : labels) 
      // ......
      // 建立当前遍历到的输入张量字符到
      // 输出张量的字符到的映射
      // label: 当前遍历到的字符
      // label_perm_index: 保存了输出字符对应的索引
      // 所以 perm_shape 就是建立了输入张量的每一维度
      // 与输出张量维度的对应关系
      perm_shape[label_perm_index[label]] = j++;
    
    // 如果输入张量的维度小于补全后的输出
    // 那么 perm_shape 中一定存在值为 -1 的元素
    // 那么相当于需要扩充输入张量的维度
    // 扩充的维度添加在张量的尾部 
    for (int64_t& index : perm_shape) 
      if (index == -1) 
        // 在张量尾部插入维度1
        operand = operand.unsqueeze(-1);
        // 修改了perm_shape中的index,
        // 因为是引用取值
        index = j++;
      
    
    // 把输入张量的维度按照输出张量的维度重排,采用 permute 操作
    permuted_operands.push_back(operand.permute(perm_shape)); 
  
  // ......
  Tensor result = permuted_operands[0];
  // .....
  // 计算最终结果
  for (const auto i: c10::irange(1, num_ops)) 
    Tensor operand = permuted_operands[i];
    // 新建 vector 用于保存求和索引
    std::vector<int64_t> sum_dims;
    // ......
    // 详细的代码可以阅读 PyTorch 源码
    // 这里我还没有完全理解 sumproduct_pair 的实现,
    // 里面用的是 permute + bmm,
    // 不过我觉得可以简单理解为
    // 将张量做广播乘法,再根据求和索引做累加
    result = sumproduct_pair(result, operand, sum_dims, false);
  
  return result;

图解实现

下面还是用矩阵乘法来说明C++的实现思路,下图展示的是矩阵乘法的通用实现:

接下来展示C++的实现思路:

4

总结

通过上面的实际例子和代码解读,可以看到 einsum 非常灵活,可以方便地实现各种常用的张量操作。希望读者通过这篇文章也可以轻松掌握 einsum 的基本用法。文中对于 PyTorch C++实现代码的解析是基于作者自己的理解,如果觉得有误或者不理解的地方欢迎讨论。

参考资料

1.https://www.youtube.com/watch?v=pkVwUVEHmfI&ab_channel=AladdinPersson

2.https://rockt.github.io/2018/04/30/einsum

3.https://ajcr.net/Basic-guide-to-einsum/

4.https://obilaniu6266h16.wordpress.com/2016/02/04/einstein-summation-in-numpy/

其他人都在看

点击“阅读原文”,欢迎下载体验OneFlow新一代开源深度学习框架

以上是关于一文轻松掌握深度学习框架中的einsum的主要内容,如果未能解决你的问题,请参考以下文章

一文读懂深度学习框架下的目标检测(附数据集)

PyTorch 中的 tensordot 以及 einsum 函数介绍

Spring入门到精通,一文带你轻松搞定Spring!

01:一文入门谷歌深度学习框架Tensorflow

一文盘点近期热门机器学习开源项目!(研究框架AutoML库深度学习...)

一文读懂AOE到底是什么!