kafka原理

Posted 我的代码中没有bug

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了kafka原理相关的知识,希望对你有一定的参考价值。

一、kafka架构原理

二、生产者写入消息

三、消费者消费消息

四、怎么保证消息不丢失

五、kafka为什么比一般消息中间件更快

【1】Partition 并行处理;

【2】顺序写磁盘,充分利用磁盘特性;

【3】利用了现代操作系统分页存储 Page Cache 来利用内存提高 I/O 效率;

【4】采用了零拷贝技术:Producer 生产的数据持久化到 Broker,采用 mmap 文件映射,实现顺序的快速写入;Customer 从 Broker 读取数据,采

用 Sendfile,将磁盘文件读到 OS 内核缓冲区后,转到 NIO buffer进行网络发送,减少 CPU 消耗;

【5】减少网络传输:通过批处理+数据压缩等特性,减少网络传送次数,提高网络传送的利用率。

kafka原理分析

参考技术A 作为一款典型的消息中间件产品,kafka系统仍然由producer、broker、consumer三部分组成。kafka涉及的几个常用概念和组件简单介绍如下:

当consumer group的状态发生变化(如有consumer故障、增减consumer成员等)或consumer group消费的topic状态发生变化(如增加了partition,消费的topic发生变化),kafka集群会自动调整和重新分配consumer消费的partition,这个过程就叫做rebalance(再平衡)。

__consumer_offsets是kafka集群自己维护的一个特殊的topic,它里面存储的是每个consumer group已经消费了每个topic partition的offset。__consumer_offsets中offset消息的key由group id,topic name,partition id组成,格式为 topic name-$partition id,value值就是consumer提交的已消费的topic partition offset值。__consumer_offsets的分区数和副本数分别由offsets.topic.num.partitions(默认值为50)和offsets.topic.replication.factor(默认值为1)参数配置。我们通过公式 hash(group id) % offsets.topic.num.partitions 就可以计算出指定consumer group的已提交offset存储的partition。由于consumer group提交的offset消息只有最后一条消息有意义,所以__consumer_offsets是一个compact topic,kafka集群会周期性的对__consumer_offsets执行compact操作,只保留最新的一次提交offset。

group coordinator运行在kafka某个broker上,负责consumer group内所有的consumer成员管理、所有的消费的topic的partition的消费关系分配、offset管理、触发rebalance等功能。group coordinator管理partition分配时,会指定consumer group内某个consumer作为group leader执行具体的partition分配任务。存储某个consumer group已提交offset的__consumer_offsets partition leader副本所在的broker就是该consumer group的协调器运行的broker。

跟大多数分布式系统一样,集群有一个master角色管理整个集群,协调集群中各个成员的行为。kafka集群中的controller就相当于其它分布式系统的master,用来负责集群topic的分区分配,分区leader选举以及维护集群的所有partition的ISR等集群协调功能。集群中哪个borker是controller也是通过一致性协议选举产生的,2.8版本之前通过zookeeper进行选主,2.8版本后通过kafka raft协议进行选举。如果controller崩溃,集群会重新选举一个broker作为新的controller,并增加controller epoch值(相当于zookeeper ZAB协议的epoch,raft协议的term值)

当kafka集群新建了topic或为一个topic新增了partition,controller需要为这些新增加的partition分配到具体的broker上,并把分配结果记录下来,供producer和consumer查询获取。

因为只有partition的leader副本才会处理producer和consumer的读写请求,而partition的其他follower副本需要从相应的leader副本同步消息,为了尽量保证集群中所有broker的负载是均衡的,controller在进行集群全局partition副本分配时需要使partition的分布情况是如下这样的:

在默认情况下,kafka采用轮询(round-robin)的方式分配partition副本。由于partition leader副本承担的流量比follower副本大,kafka会先分配所有topic的partition leader副本,使所有partition leader副本全局尽量平衡,然后再分配各个partition的follower副本。partition第一个follower副本的位置是相应leader副本的下一个可用broker,后面的副本位置依此类推。

举例来说,假设我们有两个topic,每个topic有两个partition,每个partition有两个副本,这些副本分别标记为1-1-1,1-1-2,1-2-1,1-2-2,2-1-1,2-1-2,2-2-1,2-2-2(编码格式为topic-partition-replia,编号均从1开始,第一个replica是leader replica,其他的是follower replica)。共有四个broker,编号是1-4。我们先对broker按broker id进行排序,然后分配leader副本,最后分配foller副本。
1)没有配置broker.rack的情况
现将副本1-1-1分配到broker 1,然后1-2-1分配到broker 2,依此类推,2-2-1会分配到broker 4。partition 1-1的leader副本分配在broker 1上,那么下一个可用节点是broker 2,所以将副本1-1-2分配到broker 2上。同理,partition 1-2的leader副本分配在broker 2上,那么下一个可用节点是broker 3,所以将副本1-1-2分配到broker 3上。依此类推分配其他的副本分片。最后分配的结果如下图所示:

2)配置了broker.rack的情况
假设配置了两个rack,broker 1和broker 2属于Rack 1,broker 3和broker 4属于Rack 2。我们对rack和rack内的broker分别排序。然后先将副本1-1-1分配到Rack 1的broker 1,然后将副本1-2-1分配到下一个Rack的第一个broker,即Rack 2的broker 3。其他的parttition leader副本依此类推。然后分配follower副本,partition 1-1的leader副本1-1-1分配在Rack 1的broker上,下一个可用的broker是Rack 2的broker 3,所以分配到broker 3上,其他依此类推。最后分配的结果如下图所示:

kafka除了按照集群情况自动分配副本,也提供了reassign工具人工分配和迁移副本到指定broker,这样用户可以根据集群实际的状态和各partition的流量情况分配副本

kafka集群controller的一项功能是在partition的副本中选择一个副本作为leader副本。在topic的partition创建时,controller首先分配的副本就是leader副本,这个副本又叫做preference leader副本。

当leader副本所在broker失效时(宕机或网络分区等),controller需要为在该broker上的有leader副本的所有partition重新选择一个leader,选择方法就是在该partition的ISR中选择第一个副本作为新的leader副本。但是,如果ISR成员只有一个,就是失效的leader自身,其余的副本都落后于leader怎么办?kafka提供了一个unclean.leader.election配置参数,它的默认值为true。当unclean.leader.election值为true时,controller还是会在非ISR副本中选择一个作为leader,但是这时候使用者需要承担数据丢失和数据不一致的风险。当unclean.leader.election值为false时,则不会选择新的leader,该partition处于不可用状态,只能恢复失效的leader使partition重新变为可用。

当preference leader失效后,controller重新选择一个新的leader,但是preference leader又恢复了,而且同步上了新的leader,是ISR的成员,这时候preference leader仍然会成为实际的leader,原先的新leader变为follower。因为在partition leader初始分配时,使按照集群副本均衡规则进行分配的,这样做可以让集群尽量保持平衡。

为了保证topic的高可用,topic的partition往往有多个副本,所有的follower副本像普通的consumer一样不断地从相应的leader副本pull消息。每个partition的leader副本会维护一个ISR列表存储到集群信息库里,follower副本成为ISR成员或者说与leader是同步的,需要满足以下条件:

1)follower副本处于活跃状态,与zookeeper(2.8之前版本)或kafka raft master之间的心跳正常

2)follower副本最近replica.lag.time.max.ms(默认是10秒)时间内从leader同步过最新消息。需要注意的是,一定要拉取到最新消息,如果最近replica.lag.time.max.ms时间内拉取过消息,但不是最新的,比如落后follower在追赶leader过程中,也不会成为ISR。

follower在同步leader过程中,follower和leader都会维护几个参数,来表示他们之间的同步情况。leader和follower都会为自己的消息队列维护LEO(Last End Offset)和HW(High Watermark)。leader还会为每一个follower维护一个LEO。LEO表示leader或follower队列写入的最后一条消息的offset。HW表示的offset对应的消息写入了所有的ISR。当leader发现所有follower的LEO的最小值大于HW时,则会增加HW值到这个最小值LEO。follower拉取leader的消息时,同时能获取到leader维护的HW值,如果follower发现自己维护的HW值小于leader发送过来的HW值,也会增加本地的HW值到leader的HW值。这样我们可以得到一个不等式: follower HW <= leader HW <= follower LEO <= leader LEO 。HW对应的log又叫做committed log,consumer消费partititon的消息时,只能消费到offset值小于或等于HW值的消息的,由于这个原因,kafka系统又称为分布式committed log消息系统。

kafka的消息内容存储在log.dirs参数配置的目录下。kafka每个partition的数据存放在本地磁盘log.dirs目录下的一个单独的目录下,目录命名规范为 $topicName-$partitionId ,每个partition由多个LogSegment组成,每个LogSegment由一个数据文件(命名规范为: baseOffset.index)和一个时间戳索引文件(命名规范为:$baseOffset.timeindex)组成,文件名的baseOffset就是相应LogSegment中第一条消息的offset。.index文件存储的是消息的offset到该消息在相应.log文件中的偏移,便于快速在.log文件中快速找到指定offset的消息。.index是一个稀疏索引,每隔一定间隔大小的offset才会建立相应的索引(比如每间隔10条消息建立一个索引)。.timeindex也是一个稀疏索引文件,这样可以根据消息的时间找到对应的消息。

可以考虑将消息日志存放到多个磁盘中,这样多个磁盘可以并发访问,增加消息读写的吞吐量。这种情况下,log.dirs配置的是一个目录列表,kafka会根据每个目录下partition的数量,将新分配的partition放到partition数最少的目录下。如果我们新增了一个磁盘,你会发现新分配的partition都出现在新增的磁盘上。

kafka提供了两个参数log.segment.bytes和log.segment.ms来控制LogSegment文件的大小。log.segment.bytes默认值是1GB,当LogSegment大小达到log.segment.bytes规定的阈值时,kafka会关闭当前LogSegment,生成一个新的LogSegment供消息写入,当前供消息写入的LogSegment称为活跃(Active)LogSegment。log.segment.ms表示最大多长时间会生成一个新的LogSegment,log.segment.ms没有默认值。当这两个参数都配置了值,kafka看哪个阈值先达到,触发生成新的LogSegment。

kafka还提供了log.retention.ms和log.retention.bytes两个参数来控制消息的保留时间。当消息的时间超过了log.retention.ms配置的阈值(默认是168小时,也就是一周),则会被认为是过期的,会被kafka自动删除。或者是partition的总的消息大小超过了log.retention.bytes配置的阈值时,最老的消息也会被kafka自动删除,使相应partition保留的总消息大小维持在log.retention.bytes阈值以下。这个地方需要注意的是,kafka并不是以消息为粒度进行删除的,而是以LogSegment为粒度删除的。也就是说,只有当一个LogSegment的最后一条消息的时间超过log.retention.ms阈值时,该LogSegment才会被删除。这两个参数都配置了值时,也是只要有一个先达到阈值,就会执行相应的删除策略

当我们使用KafkaProducer向kafka发送消息时非常简单,只要构造一个包含消息key、value、接收topic信息的ProducerRecord对象就可以通过KafkaProducer的send()向kafka发送消息了,而且是线程安全的。KafkaProducer支持通过三种消息发送方式

KafkaProducer客户端虽然使用简单,但是一条消息从客户端到topic partition的日志文件,中间需要经历许多的处理过程。KafkaProducer的内部结构如下所示:

从图中可以看出,消息的发送涉及两类线程,一类是调用KafkaProducer.send()方法的应用程序线程,因为KafkaProducer.send()是多线程安全的,所以这样的线程可以有多个;另一类是与kafka集群通信,实际将消息发送给kafka集群的Sender线程,当我们创建一个KafkaProducer实例时,会创建一个Sender线程,通过该KafkaProducer实例发送的所有消息最终通过该Sender线程发送出去。RecordAccumulator则是一个消息队列,是应用程序线程与Sender线程之间消息传递的桥梁。当我们调用KafkaProducer.send()方法时,消息并没有直接发送出去,只是写入了RecordAccumulator中相应的队列中,最终需要Sender线程在适当的时机将消息从RecordAccumulator队列取出来发送给kafka集群。

消息的发送过程如下:

在使用KafkaConsumer实例消费kafka消息时,有一个特性我们要特别注意,就是KafkaConsumer不是多线程安全的,KafkaConsumer方法都在调用KafkaConsumer的应用程序线程中运行(除了consumer向kafka集群发送的心跳,心跳在一个专门的单独线程中发送),所以我们调用KafkaConsumer的所有方法均需要保证在同一个线程中调用,除了KafkaConsumer.wakeup()方法,它设计用来通过其它线程向consumer线程发送信号,从而终止consumer执行。

跟producer一样,consumer要与kafka集群通信,消费kafka消息,首先需要获取消费的topic partition leader replica所在的broker地址等信息,这些信息可以通过向kafka集群任意broker发送Metadata请求消息获取。

我们知道,一个consumer group有多个consumer,一个topic有多个partition,而且topic的partition在同一时刻只能被consumer group内的一个consumer消费,那么consumer在消费partition消息前需要先确定消费topic的哪个partition。partition的分配通过group coordinator来实现。基本过程如下:

我们可以通过实现接口org.apache.kafka.clients.consumer.internals.PartitionAssignor自定义partition分配策略,但是kafka已经提供了三种分配策略可以直接使用。

partition分配完后,每个consumer知道了自己消费的topic partition,通过metadata请求可以获取相应partition的leader副本所在的broker信息,然后就可以向broker poll消息了。但是consumer从哪个offset开始poll消息?所以consumer在第一次向broker发送FetchRequest poll消息之前需要向Group Coordinator发送OffsetFetchRequest获取消费消息的起始位置。Group Coordinator会通过key topic-$partition查询 __consumer_offsets topic中是否有offset的有效记录,如果存在,则将consumer所属consumer group最近已提交的offset返回给consumer。如果没有(可能是该partition是第一次分配给该consumer group消费,也可能是该partition长时间没有被该consumer group消费),则根据consumer配置参数auto.offset.reset值确定consumer消费的其实offset。如果auto.offset.reset值为latest,表示从partition的末尾开始消费,如果值为earliest,则从partition的起始位置开始消费。当然,consumer也可以随时通过KafkaConsumer.seek()方法人工设置消费的起始offset。

kafka broker在收到FetchRequest请求后,会使用请求中topic partition的offset查一个skiplist表(该表的节点key值是该partition每个LogSegment中第一条消息的offset值)确定消息所属的LogSegment,然后继续查LogSegment的稀疏索引表(存储在.index文件中),确定offset对应的消息在LogSegment文件中的位置。为了提升消息消费的效率,consumer通过参数fetch.min.bytes和max.partition.fetch.bytes告诉broker每次拉取的消息总的最小值和每个partition的最大值(consumer一次会拉取多个partition的消息)。当kafka中消息较少时,为了让broker及时将消息返回给consumer,consumer通过参数fetch.max.wait.ms告诉broker即使消息大小没有达到fetch.min.bytes值,在收到请求后最多等待fetch.max.wait.ms时间后,也将当前消息返回给consumer。fetch.min.bytes默认值为1MB,待fetch.max.wait.ms默认值为500ms。

为了提升消息的传输效率,kafka采用零拷贝技术让内核通过DMA把磁盘中的消息读出来直接发送到网络上。因为kafka写入消息时将消息写入内存中就返回了,如果consumer跟上了producer的写入速度,拉取消息时不需要读磁盘,直接从内存获取消息发送出去就可以了。

为了避免发生再平衡后,consumer重复拉取消息,consumer需要将已经消费完的消息的offset提交给group coordinator。这样发生再平衡后,consumer可以从上次已提交offset出继续拉取消息。

kafka提供了多种offset提交方式

partition offset提交和管理对kafka消息系统效率来说非常关键,它直接影响了再平衡后consumer是否会重复拉取消息以及重复拉取消息的数量。如果offset提交的比较频繁,会增加consumer和kafka broker的消息处理负载,降低消息处理效率;如果offset提交的间隔比较大,再平衡后重复拉取的消息就会比较多。还有比较重要的一点是,kafka只是简单的记录每次提交的offset值,把最后一次提交的offset值作为最新的已提交offset值,作为再平衡后消息的起始offset,而什么时候提交offset,每次提交的offset值具体是多少,kafka几乎不关心(这个offset对应的消息应该存储在kafka中,否则是无效的offset),所以应用程序可以先提交3000,然后提交2000,再平衡后从2000处开始消费,决定权完全在consumer这边。

kafka中的topic partition与consumer group中的consumer的消费关系其实是一种配对关系,当配对双方发生了变化时,kafka会进行再平衡,也就是重新确定这种配对关系,以提升系统效率、高可用性和伸缩性。当然,再平衡也会带来一些负面效果,比如在再平衡期间,consumer不能消费kafka消息,相当于这段时间内系统是不可用的。再平衡后,往往会出现消息的重复拉取和消费的现象。

触发再平衡的条件包括:

需要注意的是,kafka集群broker的增减或者topic partition leader重新选主这类集群状态的变化并不会触发在平衡

有两种情况与日常应用开发比较关系比较密切:

consumer在调用subscribe()方法时,支持传入一个ConsumerRebalanceListener监听器,ConsumerRebalanceListener提供了两个方法,onPartitionRevoked()方法在consumer停止消费之后,再平衡开始之前被执行。可以发现,这个地方是提交offset的好时机。onPartitonAssigned()方法则会在重新进行partition分配好了之后,但是新的consumer还未消费之前被执行。

我们在提到kafka时,首先想到的是它的吞吐量非常大,这也是很多人选择kafka作为消息传输组件的重要原因。

以下是保证kafka吞吐量大的一些设计考虑:

但是kafka是不是总是这么快?我们同时需要看到kafka为了追求快舍弃了一些特性:

所以,kafka在消息独立、允许少量消息丢失或重复、不关心消息顺序的场景下可以保证非常高的吞吐量,但是在需要考虑消息事务、严格保证消息顺序等场景下producer和consumer端需要进行复杂的考虑和处理,可能会比较大的降低kafka的吞吐量,例如对可靠性和保序要求比较高的控制类消息需要非常谨慎的权衡是否适合使用kafka。

我们通过producer向kafka集群发送消息,总是期望消息能被consumer成功消费到。最不能忍的是producer收到了kafka集群消息写入的正常响应,但是consumer仍然没有消费到消息。

kafka提供了一些机制来保证消息的可靠传递,但是有一些因素需要仔细权衡考虑,这些因素往往会影响kafka的吞吐量,需要在可靠性与吞吐量之间求得平衡:

kafka只保证partition消息顺序,不保证topic级别的顺序,而且保证的是partition写入顺序与读取顺序一致,不是业务端到端的保序。

如果对保序要求比较高,topic需要只设置一个partition。这时可以把参数max.in.flight.requests.per.connection设置为1,而retries设置为大于1的数。这样即使发生了可恢复型错误,仍然能保证消息顺序,但是如果发生不可恢复错误,应用层进行重试的话,就无法保序了。也可以采用同步发送的方式,但是这样也极大的降低了吞吐量。如果消息携带了表示顺序的字段,可以在接收端对消息进行重新排序以保证最终的有序。

以上是关于kafka原理的主要内容,如果未能解决你的问题,请参考以下文章

Kafka原理及单机部署

Kafka架构及基本原理简析

Kafka架构及基本原理简析

Java并发原理解析!dockerelk微服务

Kafka生产者开发,原理分析,以及参数配置

java设计模式书籍,全套教学资料