学习 Python 之 Pygame 开发魂斗罗

Posted _DiMinisH

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了学习 Python 之 Pygame 开发魂斗罗相关的知识,希望对你有一定的参考价值。

学习 Python 之 Pygame 开发魂斗罗(十二)

继续编写魂斗罗

在上次的博客学习 Python 之 Pygame 开发魂斗罗(十一)中,我们实现了敌人击中玩家碰到玩家,玩家死亡的效果,但是还有一点问题,这次我们来解决一下,之后加入一下地图碰撞体,调整一下整体代码,为加入新的敌人做准备

下面是图片的素材

链接:https://pan.baidu.com/s/1X7tESkes_O6nbPxfpHD6hQ?pwd=hdly
提取码:hdly

1. 修改玩家扣减生命值

下面是玩家碰到敌人子弹的函数,我们看到玩家生命值减少是修改变量的值


我们对代码进行修改,把玩家扣减生命值的代码写成函数的形式

在玩家类中新增函数

def damage(self, damage):
    if not self.isInvincible:
        self.life -= damage
        return True
    return False

再添加成员变量

self.isInvincible = True


self.isInvincible变量用来让玩家有无敌时间,当玩家复活后,没有落地之前,应该是无敌的,这样防止玩家刚复活就被子弹击中死亡了

damage函数用来扣减玩家生命值,返回值表示是否扣减成功

我们来到主类,把damage()函数调用一下

进入updatePlayerPosition()函数,找到下方红框中的位置

修改代码

# 与敌人碰撞
if pygame.sprite.spritecollideany(MainGame.player1, MainGame.enemyGroup):
    if MainGame.player1.damage(1):
        MainGame.explodeList.append(Explode(MainGame.player1, ExplodeVariety.PLAYER1))
        initPlayer1(MainGame.player1.life)


然后来到子弹类,修改collidePlayer()函数

def collidePlayer(self, player, explodeList):
    # 函数的返回值用来表示是否要重新初始化玩家
    # 如果当前子弹和玩家发生碰撞
    if pygame.sprite.collide_rect(self, player):
        if player.damage(1):
            self.isDestroy = True
            explodeList.append(Explode(player, ExplodeVariety.PLAYER1))
            return True
    return False

刚才我们设置了isInvincible变量,此时运行游戏,玩家一定是无敌的,因为isInvincible初始值是True,我们让玩家一落地变成不是无敌的

进入updatePlayerPosition()函数,增加下面的代码

if MainGame.player1.isInvincible:
    # 玩家落地不无敌
    MainGame.player1.isInvincible = False

好了,我们就修改完成了,运行一下,看看有没有问题

运行成功,没有问题

2. 解决玩家下蹲子弹不会击中玩家而是直接让玩家死亡的问题

当我们蹲下时,子弹不会从玩家上面飞过,而是判断为玩家被击中

这个原因是因为玩家的图片很大,判定碰撞的时候要进行判断,如果玩家是蹲下的情况,要计算子弹是否进入了玩家中心以下的范围

我们来到子弹类,对colliderPlayer函数修改

def collidePlayer(self, player, explodeList):
    if pygame.sprite.collide_rect(self, player):
        # 蹲下的时候,由于图片上半部分是空白,所有子弹必须击中下半部分,才判断为玩家被击中
        if player.isDown or player.isSquating:
            x = player.rect.x
            y = player.rect.y + player.rect.height / 2 + 5
            if (x < self.rect.x < player.rect.x + player.rect.width) and (y < self.rect.y < player.rect.y + player.rect.height):
                if player.damage(1):
                    self.isDestroy = True
                    explodeList.append(Explode(player, ExplodeVariety.PLAYER1))
                    return True
        elif player.isInWater:
            x = player.rect.x
            y = player.rect.y + player.rect.height / 2
            if (x < self.rect.x < player.rect.x + player.rect.width) and (
                    y < self.rect.y < player.rect.y + player.rect.height):
                if player.damage(1):
                    self.isDestroy = True
                    explodeList.append(Explode(player, ExplodeVariety.PLAYER1))
                    return True
        else:
            if player.damage(1):
                self.isDestroy = True
                explodeList.append(Explode(player, ExplodeVariety.PLAYER1))
                return True
    return False

现在我们再运行一下,看看效果

我们看到玩家蹲下时,子弹会从玩家上面过去了

3. 完善地图

接下来,我们把地图碰撞体完善一下,修改主类函数initLand()

def initLand():
    land1 = Collider(81, 119 * MAP_SCALE, 737 * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    # land1 = Collider(81, 119 * MAP_SCALE, 8000 * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land2 = Collider(400, 151 * MAP_SCALE, 96 * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land3 = Collider(640, 183 * MAP_SCALE, 33 * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land4 = Collider(880, 183 * MAP_SCALE, 33 * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land5 = Collider(720, 215 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land6 = Collider(1040, 154 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land7 = Collider(1600, 166 * MAP_SCALE, 3 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land8 = Collider(1120 * RATIO, 215 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land9 = Collider(1650 * RATIO, 119 * MAP_SCALE, 5 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land10 = Collider(2185 * RATIO, 119 * MAP_SCALE, 8 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land11 = Collider(2595 * RATIO, 215 * MAP_SCALE, 3 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land12 = Collider(2770 * RATIO, 167 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land13 = Collider(2535 * RATIO, 87 * MAP_SCALE, 16 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land14 = Collider(2950 * RATIO, 151 * MAP_SCALE, 7 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land15 = Collider(3185 * RATIO, 215 * MAP_SCALE, 6 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land16 = Collider(3420 * RATIO, 119 * MAP_SCALE, 7 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land17 = Collider(3537 * RATIO, 183 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land18 = Collider(3715 * RATIO, 183 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land19 = Collider(3890 * RATIO, 167 * MAP_SCALE, 1 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land20 = Collider(3775 * RATIO, 87 * MAP_SCALE, 5 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land21 = Collider(4010 * RATIO, 151 * MAP_SCALE, 3 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land22 = Collider(4125 * RATIO, 119 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land23 = Collider(4304 * RATIO, 151 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land24 = Collider(4304 * RATIO, 216 * MAP_SCALE, 1 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land25 = Collider(4361 * RATIO, 183 * MAP_SCALE, 3 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land26 = Collider(4537 * RATIO, 119 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land27 = Collider(4598 * RATIO, 87 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land28 = Collider(4657 * RATIO, 167 * MAP_SCALE, 1 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land29 = Collider(4598 * RATIO, 216 * MAP_SCALE, 1 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land30 = Collider(4776 * RATIO, 119 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land31 = Collider(4835 * RATIO, 151 * MAP_SCALE, 5 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land32 = Collider(5010 * RATIO, 216 * MAP_SCALE, 3 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land33 = Collider(5250 * RATIO, 183 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land34 = Collider(5423 * RATIO, 151 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land35 = Collider(5543 * RATIO, 119 * MAP_SCALE, 4 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land36 = Collider(5601 * RATIO, 167 * MAP_SCALE, 3 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land37 = Collider(5541 * RATIO, 216 * MAP_SCALE, 8 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land38 = Collider(5776 * RATIO, 151 * MAP_SCALE, 1 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    land39 = Collider(5836 * RATIO, 183 * MAP_SCALE, 1 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    MainGame.playerLandGroup = pygame.sprite.Group(
        land1, land2, land3, land4, land5, land6, land7, land8, land9, land10,
        land11, land12, land13, land14, land15, land16, land17, land18, land19, land20,
        land21, land22, land23, land24, land25, land26, land27, land28, land29, land30,
        land31, land32, land33, land34, land35, land36, land37, land38, land39
    )
    eland1 = Collider(81, 119 * MAP_SCALE, 737 * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    eland8 = Collider(1120 * RATIO, 215 * MAP_SCALE, 2 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    eland9 = Collider(1650 * RATIO, 119 * MAP_SCALE, 5 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    eland10 = Collider(2185 * RATIO, 119 * MAP_SCALE, 8 * LAND_LENGTH * MAP_SCALE, LAND_THICKNESS * MAP_SCALE)
    MainGame.enemyLandGroup = pygame.sprite.Group(eland1, eland8, eland9, eland10)
    MainGame.playerColliderGroup.add(MainGame.playerLandGroup)
    MainGame.enemyColliderGroup.add(MainGame.enemyLandGroup)

这张图是碰撞体图


我们现在再来运行一下


我们可以看到,现在地图后面都有陆地碰撞体,一直持续到boss那里

4. 增加产生敌人函数,解决一直产生敌人的问题

在现在的代码中,我们产生敌人的逻辑直接写在了update()函数里,为了方便管理,我们把代码提出来写成函数


把上面红框圈出的代码,提出来写成函数


但是,我们之前已经定义过generateEnemy()函数了


我们把原来的generateEnemy()函数改名为generateEnemy1(),表示创建的是敌人1,并且把它变为全局函数

generateEnemy()表示创建的是全部敌人

def generateEnemy1(self, x, y, direction, currentTime):
    # 根据玩家的当前位置和方向产生一个敌人
    enemy = Enemy1(x, y, direction, currentTime)
    # 分别加入敌人列表,所有角色组,敌人碰撞组
    MainGame.enemyList.append(enemy)
    MainGame.allSprites.add(enemy)
    MainGame.enemyGroup.add(enemy)

之后添加成员变量

self.enemyBoolList = [True for _ in range(5)]


这个数组用来指定敌人产生个数的,这里写的5,表示有五个位置产生敌人

那么为什么要有这个数组呢

在原来的产生敌人代码中

if -1505 < self.backRect.x < -1500:
        generateEnemy1(MainGame.player1.rect.x + 600, POSITION_1, Direction.LEFT, pygame.time.get_ticks())
        generateEnemy1(MainGame.player1.rect.x - 360, POSITION_1, Direction.RIGHT, pygame.time.get_ticks())

我们可以看到,当玩家进入了这个范围(实际是地图移动到了这个范围),就会产生敌人,但是如果移动到这个范围后,玩家停止移动了,那么就会一直产生敌人,这显然不是我们想看到的,我们想的是玩家走到范围内,就产生敌人,代码只执行一次,但是按照原来的逻辑,如果玩家一直站在范围里面,代码就会一直执行,所以我们得设置一个enemyBoolList,如果是True,就执行代码,否则就不执行

修改后的产生敌人的代码如下:

这里就设置了只执行一次产生敌人的代码,列表的长度表示敌人产生点的个数

def generateEnemy(self):
    if -1505 < self.backRect.x < -1500:
        if self.enemyBoolList[0]:
            self.enemyBoolList[0] = False
            generateEnemy1(MainGame.player1.rect.x + 600, POSITION_1, Direction.LEFT, pygame.time.get_ticks())
            generateEnemy1(MainGame.player1.rect.x - 360, POSITION_1, Direction.RIGHT, pygame.time.get_ticks())

    if -1705 < self.backRect.x < -1700:
        if self.enemyBoolList[1]:
            self.enemyBoolList[1] = False
            generateEnemy1(MainGame.player1.rect.x - 360, POSITION_1, Direction.RIGHT, pygame.time.get_ticks())
            generateEnemy1(MainGame.player1.rect.x - 400, POSITION_1, Direction.RIGHT,
                           pygame.time.get_ticks())

我们运行一下游戏,看看有没有问题


ok,一切正常

5. 给玩家类增加计算玩家中心的方法

敌人2发射的子弹带有追踪效果,因此我们要时刻计算玩家的中心

我们给玩家类加入代码

def getCenter(self):
    return self.rect.x + self.rect.width / 2, self.rect.y + self.rect.height / 2 + y0

这个代码是计算玩家中心位置的

y0是中心的偏移量,我们在Constants.py中设置


至此,就完啦,接下来就是创建敌人2了

完整的主类代码

import copy
import sys
import pygame
from Constants import *
from PlayerOne import PlayerOne
from Collider import Collider
from Enemy1 import Enemy1
from Explode import Explode


def drawPlayerOneBullet(player1BulletList):
    for bullet in player1BulletList:
        if bullet.isDestroy:
            player1BulletList.remove(bullet)
        else:
            bullet.draw(MainGame.window)
            bullet.move()
            bullet.collideEnemy(MainGame.enemyList, MainGame.explodeList)

def enemyUpdate(enemyList, enemyBulletList):
    # 遍历整个敌人列表
    for enemy in enemyList:
        # 如果敌人已经被摧毁了
        if enemy.isDestroy:
            # 删除它的相关信息
            enemyList.remove(enemy)
            MainGame.allSprites.remove(enemy)
            MainGame.enemyGroup.remove(enemy)
        # 否则
        else:
            # 检查位置
            enemy.checkPosition(MainGame.player1.rect.x, MainGame.player1.rect.y)
            # 显示敌人
            enemy.draw(pygame.time.get_ticks())
            # 敌人移动
            enemy.move(pygame.time.get_ticks())
            # 敌人开火
            enemy.fire(enemyBulletList)


def updateEnemyPosition():
    # 遍历全部敌人列表
    for enemy in MainGame.enemyList:
        # 创建一个复制
        t = copy.copy(enemy)
        t.rect学习 Python 之 Pygame 开发魂斗罗

学习 Python 之 Pygame 开发魂斗罗

学习 Python 之 Pygame 开发魂斗罗

学习 Python 之 Pygame 开发魂斗罗

学习 Python 之 Pygame 开发魂斗罗

学习 Python 之 Pygame 开发魂斗罗