LiveData Coroutine Builder的5个诡计

Posted eclipse_xu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LiveData Coroutine Builder的5个诡计相关的知识,希望对你有一定的参考价值。

点击上方蓝字关注我,知识会给你力量

这个系列我做了协程和Flow开发者的一系列文章的翻译,旨在了解当前协程、Flow、LiveData这样设计的原因,从设计者的角度,发现他们的问题,以及如何解决这些问题,pls enjoy it。

LiveData是由Google引入的,作为连接视图(Activity/Fragment)和其ViewModel的一种手段。它就像一个简化的反应式组件(例如RxJava或Kotlin的Flow),也知道视图的生命周期。

随着最近Kotlin的Coroutine和Kotlin的Flow的推出,现在Google推出了一种使用LiveData Coroutine Builder连接Kotlin的Flow和LiveData的方法。

Benefits of using Kotlin’s Coroutine/Flow

使用Kotlin的Coroutine/Flow连接到LiveData的好处是,它可以确保底层组件(如存储库、域层)完全在后台完成。

img

这将有助于克服以下问题:

  • 如果主线程很忙,LiveData的postValue就会丢弃。

  • LiveData的转换功能都是在主线程中完成的。

Pre-requisite

要使用LiveData Coroutine Builder,首先我们需要包含KTX库,例如:

implementation "androidx.lifecycle:lifecycle-livedata-ktx:2.4.0"

然后,人们可以使用它,使用:

liveData 
    emit(data) // OR
    emitSource(liveData)

// OR
stateFlow.asLiveData()

让我们来看看LiveData Coroutine Builder的用法吧。

1. Connect Kotlin Coroutine to LiveData

如果我们有一个需要调用的coroutine,以获取一些数据到LiveData,我们可以做以下工作。

val someTypeLiveData: LiveData<SomeType> = liveData 
    // get data from is a suspend function 
    val data = aSuspedFunction() 
    emit(data)
img

一旦LiveData连接到任何观察者,它就会调用并接纳来自suspend函数的数据。

我们也可以确保它是在后台线程上完成的,使用:

val someTypeLiveData: LiveData<SomeType> =
    liveData(viewModelScope.coroutineContext + Dispatchers.IO) 
        // get data from is a suspend function 
        val data = aSuspedFunction()
        emit(data)
    

2. Connect Kotlin Flow (or StateFlow) to LiveData

以上是一次性的获取。但如果我们有一个流程,其中数据是连续排放的,我们可以使用:

val someTypeLiveData: LiveData<SomeType> =   
    stateFlow.asLiveData(
        viewModelScope.coroutineContext + Dispatchers.IO
    )
img

一旦LiveData连接到任何观察者,它就会在stateFlow上待命,发出它的数据。在内部对于asLiveData实际上也是一个LiveData ...。

public fun <T> Flow<T>.asLiveData(
    context: CoroutineContext = EmptyCoroutineContext,
    timeoutInMs: Long = DEFAULT_TIMEOUT
): LiveData<T> = liveData(context, timeoutInMs) 
    collect 
        emit(it)
    

3. Transformation on Background

正如我们之前所分享的,LiveData转换是在主线程上完成的。这使得如果转换逻辑是计算密集型的,这种转换就成了问题。

img

为了把它移到后台,我们必须使用LiveData的switchMap和liveData的coroutine builder,如下图所示。

val liveData: LiveData<String> =
    Transformations.switchMap(sourceliveData) 
        liveData(viewModelScope.coroutineContext + Dispatchers.IO)
            val data = someTranformFunction(it)
            emit(data)
        
    
img

4. Connecting Multiple LiveData Source Emission

在这种情况下,我们有多个LiveDatas源数据,我们想控制数据输出的逻辑,我们也可以使用Coroutine Builder。

img

下面是一个非常蹩脚的例子:

liveData(viewModelScope.coroutineContext + Dispatchers.IO) 
    emitSource(repository.liveDataSourceA)
    delay(2000)
    emitSource(repository.liveDataSourceB)
    delay(2000)
    emitSource(repository.liveDataSourceC)

完整示例:https://github.com/elye/demo_android_compose_state_flow_livedata_viewmodel

5. Delay and Keep Coroutine Alive Temporarily

我们在liveData coroutine builder中的一个特殊功能是,它可以被配置为在LiveData不活动的特定时间内保持coroutine的活力。

这在用户改变配置或临时暂停Activity的情况下是非常有用的,而我们希望保持循环程序的活力以完成工作。但是,如果它超过了时间阈值,那么我们就想重新启动整个coroutine操作。

下面是对该条件的准确描述:

liveData构建块作为coroutines和LiveData之间的结构化并发原件。该代码块在LiveData变得活跃时开始执行,当LiveData变得不活跃时,在一个可配置的超时后自动取消。如果它在完成之前被取消,那么如果LiveData再次变得活跃,它将被重新启动。如果它在之前的运行中成功完成,它不会重新启动。注意,只有在自动取消的情况下才会重新启动。如果该块因任何其他原因被取消(例如抛出一个CancellationException),它不会被重新启动。

如果我们看一下代码,我们会看到我们有timeoutInMs,它默认为5s。

@OptIn(ExperimentalTypeInference::class)
public fun <T> liveData(
    context: CoroutineContext = EmptyCoroutineContext,
    timeoutInMs: Long = DEFAULT_TIMEOUT,
    @BuilderInference block: suspend LiveDataScope<T>.() -> Unit
): LiveData<T> = CoroutineLiveData(context, timeoutInMs, block)

这意味着,当我们把活动(观察LiveData)放在后台,并且活动在暂停/停止时(注意:不是不保留活动),Coroutine将在timeoutInMs的时间内保持活力。

  • 如果超时在coroutine运行结束前完成,coroutine将在Activity恢复活动时重新启动。

img
  • 如果超时没有完成,当Activity恢复活动时,考虑到coroutine没有完成,它将继续进行直到完成。

img
  • 如果coroutine在超时前完成,即使Activity还没有恢复,coroutine也不会被重新启动,而只是发出它的最后一个值。

img

TL; DR

有了LiveData coroutine builder,如果我们想的话,就不能在Kotlin Flow和LiveData之间建立桥梁。这为我们将两种技术结合在一起提供了更大的灵活性,即LiveData观察Android生命周期的能力,以及Kotlin Flor更好的反应式操作和线程处理。

https://medium.com/mobile-app-development-publication/5-uses-of-ktx-livedata-coroutine-builder-48b226bdd591

向大家推荐下我的网站 https://xuyisheng.top/  点击原文一键直达

专注 Android-Kotlin-Flutter 欢迎大家访问

往期推荐

本文原创公众号:群英传,授权转载请联系微信(Tomcat_xu),授权后,请在原创发表24小时后转载。

< END >

作者:徐宜生

更文不易,点个“三连”支持一下👇

以上是关于LiveData Coroutine Builder的5个诡计的主要内容,如果未能解决你的问题,请参考以下文章

使用Retrofit+Okhttp+LiveData+协程的MVVM实现的网络请求框架

使用Retrofit+Okhttp+LiveData+协程的MVVM实现的网络请求框架

JetpackLiveData 架构组件 ( LiveData 简介 | LiveData 使用方法 | ViewModel + LiveData 示例 )

JetpackLiveData 架构组件 ( LiveData 简介 | LiveData 使用方法 | ViewModel + LiveData 示例 )

Unity3D中的Coroutine具体解释

Kotlin 协程单元测试错误:线程“main @coroutine#1 @coroutine#2”中的异常 java.lang.NullPointerException