Nginx 源码学习内存池 及 优秀案例赏析:Nginx内存池设计

Posted 看,未来

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Nginx 源码学习内存池 及 优秀案例赏析:Nginx内存池设计相关的知识,希望对你有一定的参考价值。

关于设计内存池之我的想法

1、首先,你的开发环境允许你写内存池。(不要跟我说你拿着Python来写个内存池哈)
2、其次,多学学开源的/不开源的优秀线程池源码设计,人家是经过千锤百炼的。比如GNU、nginx、STL等。
3、使用内存池的其中一个优点在于确定性高,这对于时间要去苛刻的实时系统来说至关重要。比方说股票系统。
4、malloc是一个通用的内存分配器。就看你怎么理解这三个字了。
5、针对特殊场景甚至可以为重要的线程单独开内存池。
6、内存池可以节省内存,提高缓存命中率。当然,你要是觉得不需要那就不需要咯。

内存池案例

作者:阿哲
链接:https://www.zhihu.com/question/21894104/answer/19693701
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

再大的内存,只要软件运行的时间足够久,都有可能产生大量的内存碎片,从而对性能和可用内存造成负面影响。
造成内存碎片的原因大致可以归为两类:

  1. 内存分配机制。拥有先进GC机制的语言(如Java、C#),在对抗内存碎片方面表现较好。它们的GC一般会有个Compact步骤,会移动对象在内存中的位置,将多个对象整齐无间隙地排列好,从而消除了不少内存碎片。
  2. 如果是使用传统malloc/free或者自己写内存分配的话,产生内存碎片的概率不小。这方面比较典型的例子就是Firefox,它以前代码里有不少自己写的allocator,内存碎片问题是非常严重的。后来Mozilla开始逐步采用jemalloc来帮助解决这个问题。

举2个例子:Firefox7的时候修改了一个内存分配行为,就一下子降低了不少内存碎片:Firefox 7 Might Solve Memory Fragmentation
IssuesFirefox15的时候对addon的机制做了改动,一下子解决了大量长期困扰的addon内存问题:Firefox 15 plugs the add-on leaks

取决于软件的具体类型,对抗内存碎片可能是个长期的战争,有兴趣的可以翻翻Mozilla的MemShrink项目:MemShrink | Nicholas Nethercote 看看别人是怎么用了2年功夫把Firefox从一个超级耗内存的浏览器变成一个最节约内存的浏览器。


malloc 底层原理

  1. malloc开始搜索空闲内存块,如果能找到一块大小合适的就分配出去
  2. 如果malloc找不到一块合适的空闲内存,那么调用brk等系统调用扩大堆区从而获得更多的空闲内存
  3. malloc调用brk后开始转入内核态,此时操作系统中的虚拟地址系统开始工作,扩大进程的堆区,操作系统并没有为此分配真正的物理内存
  4. brk执行结束后返回到malloc,从内核态切换到用户态,malloc找到一块合适的空闲内存后返回
  5. 进程拿到内存,继续干活。
  6. 当有代码读写新申请的内存时系统内部出现缺页中断,此时再次由用户态切换到内核态,操作系统此时真正的分配物理内存,之后再次由内核态切换回用户态,程序继续。

如果对堆和栈有所了解的朋友应该会知道,堆是像上伸展的,栈是向下延伸的,那什么向上向下啊?有点迷哈。看个图:

一切尽在不言中咯。



jemalloc && tcmalloc

jemalloc

tcmalloc

说实话啊,这俩我都没有用过呢,也是第一次听,先把概念放这儿,之后有时间了研究研究。


Nginx内存池设计

Nginx 使用内存池对内存进行管理,把内存分配归结为大内存分配和小内存分配,申请的内存大小比同页的内存池最大值 max 还 大,则是大内存分配,否则为小内存分配。

  1. 大块内存的分配请求不会直接在内存池上分配内存来满足请求,而是直接向系统申请一块内存(就像 直接使用 malloc 分配内存一样),然后将这块内存挂到内存池头部的 large 字段下。
  2. 小块内存分配,则是从已有的内存池数据区中分配出一部分内存。

Nginx 内存分配总流图如下:其中 size 是用户请求分配内存的大小,pool是现有内存池。


基础数据结构

数据块:

typedef struct 
	u_char *last; // 当前内存池分配到此处,即下一次分配从此处开始
	u_char *end; // 内存池结束位置
	ngx_pool_t *next; // 内存池里面有很多块内存,这些内存块就是通过该指针连成链表的
	ngx_uint_t failed; // 内存池分配失败次数
 ngx_pool_data_t;

池结构:

struct ngx_pool_s 
	ngx_pool_data_t d; // 指向内存池的第一个数据块
	size_t max; // 内存池数据块的最大值(数目)
	ngx_pool_t *current; // 指向当前内存池
	ngx_chain_t *chain; // 该指针挂接一个ngx_chain_t结构
	ngx_pool_large_t *large; // 大块内存链表,即分配空间超过max的内存
	ngx_pool_cleanup_t *cleanup; // 释放内存池的callback
	ngx_log_t *log; // 主要用于记录日志信息
;


大块内存:

struct ngx_pool_large_s 
	ngx_pool_large_t *next; // 指向下一个large内存
	void *alloc; // 指向分配的large内存
;


回收站:

struct ngx_pool_cleanup_s 
	ngx_pool_cleanup_pt handler; // 指向用于cleanup本cleanup内存
	void *data; // 指向分配的cleanup内存
	ngx_pool_cleanup_t *next; // 指向下一个cleanup内存
;


ngx_pool_t 的逻辑结构:


源码分析

ngx_create_pool 创建内存池

用于创建一个内存池,我们创建时,传入我们的初始大小:

#define ngx_memalign(alignment, size, log)  ngx_alloc(size, log)
//ngx_alloc:对malloc进行了简单封装

ngx_pool_t *ngx_create_pool(size_t size, ngx_log_t *log)

	ngx_pool_t *p;
	p = ngx_memalign(NGX_POOL_ALIGNMENT, size, log);
	if (p == NULL) 
		return NULL;
	
	// 可以看到 last 指向 pool 之后的位置,即下一个pool块分配的位置
	p->d.last = (u_char *) p + sizeof(ngx_pool_t);
	// end 指向pool的size的最后,即当前pool可容纳的最大尺寸的结束位置
	p->d.end = (u_char *) p + size;
	p->d.next = NULL;
	p->d.failed = 0;
	size = size - sizeof(ngx_pool_t);
	p->max = (size < NGX_MAX_ALLOC_FROM_POOL) ? size : NGX_MAX_ALLOC_FROM_POOL;
	/*
		nginx对内存的管理分为大内存与小内存,
		当某一个申请的内存大于某一个值时,就需要从大内存中分配空间,否则从小内存中分配空间。
		nginx中的内存池是在创建的时候就设定好了大小,
		在以后分配小块内存的时候,如果内存不够,则是重新创建一块内存串到内存池中,而不是将原有的内存池进行扩张。
		当要分配大块内存时,则是在内存池外面再分配空间进行管理的,称为大块内存池。
	*/
	p->current = p;
	p->chain = NULL;
	p->large = NULL;
	p->cleanup = NULL;
	p->log = log;
	return p;


ngx_destroy_pool 销毁内存池

void ngx_destroy_pool(ngx_pool_t *pool)

	ngx_pool_t *p, *n;
	ngx_pool_large_t *l;
	ngx_pool_cleanup_t *c;
	
	for (c = pool->cleanup; c; c = c->next) 
		if (c->handler) 
			ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0,
			"run cleanup: %p", c);
			c->handler(c->data);
		
	
	
	for (l = pool->large; l; l = l->next) 
		ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0, "free: %p", l->alloc);
		
		if (l->alloc) 
			ngx_free(l->alloc);
		
	
	
	#if (NGX_DEBUG)
	… …
	#endif
	
	for (p = pool, n = pool->d.next; ; p = n, n = n->d.next) 
		ngx_free(p);
		
		if (n == NULL) 
			break;
		
	

遍历内存池链表,释放所有内存,包括pool,large,cleanup链表,如果指定了cleanup回调来释放,则调用cleanup的handler来释放cleanup链表中的内存。

先依次释放pool中cleanup,large类型的链表,最后释放pool本身的链表。


ngx_reset_pool 重置内存池

void ngx_reset_pool(ngx_pool_t *pool)

	ngx_pool_t *p;
	ngx_pool_large_t *l;
	
	// 先遍历large链表,释放large内存
	for (l = pool->large; l; l = l->next) 
		if (l->alloc) 
			ngx_free(l->alloc);
		
	
	
	pool->large = NULL;
	
	//重置所有小块内存区
	for (p = pool; p; p = p->d.next) 
		p->d.last = (u_char *) p + sizeof(ngx_pool_t);
	


ngx_palloc 分配内存

ngx_align_ptr:一个用来内存地址取整的宏。取整可以降低CPU读取内存的次数,提高性能。这里并没有真正意义调用malloc等函数申请内存,而是移动指针标记而已,所以内存对齐的活,得自己动手。

#define ngx_align_ptr(p, a)                                                   \\
    (u_char *) (((uintptr_t) (p) + ((uintptr_t) a - 1)) & ~((uintptr_t) a - 1))
void *ngx_palloc(ngx_pool_t *pool, size_t size)

	u_char *m;
	ngx_pool_t *p;
	
	if (size <= pool->max)  // 如果需要分配的size大于max,则使用palloc_large来分配
		p = pool->current; // 小于max,则从current开始遍历pool链表
		do 
			// 每次从last处开始分配aligned内存
			m = ngx_align_ptr(p->d.last, NGX_ALIGNMENT);
			
			if ((size_t) (p->d.end - m) >= size) 
				// 如果分配的内存够用,则就从此处分配,并调整last
				p->d.last = m + size;
				return m;
			
			
			p = p->d.next;
		 while (p);
		// 表示链表里没有能够分配size大小的内存节点
		// 则生成一个新的节点,并在其中分配内存
		return ngx_palloc_block(pool, size);
	
	// 大于max的,就在large中进行分配
	return ngx_palloc_large(pool, size);

static void *ngx_palloc_block(ngx_pool_t *pool, size_t size)

	u_char *m;
	size_t psize;
	ngx_pool_t *p,*new,*current;
	
	psize = (size_t) (pool->d.end - (u_char *) pool);//计算内存池第一个内存块的大小
	m = ngx_memalign(NGX_POOL_ALIGNMENT, psize, pool->log);//分配和第一个内存块同样大小的内存块
	if (m == NULL) 
		return NULL;
	

	new = (ngx_pool_t *) m;
	new->d.end = m + psize;//设置新内存块的end
	new->d.next = NULL;
	new->d.failed = 0;

	m += sizeof(ngx_pool_data_t);//将指针m移动到d后面的一个位置,作为起始位置
	m = ngx_align_ptr(m, NGX_ALIGNMENT);//对m指针按4字节对齐处理
	new->d.last = m + size;//设置新内存块的last,即申请使用size大小的内存

	current = pool->current;
  //这里的循环用来找最后一个链表节点,这里failed用来控制循环的长度,如果分配失败次数达到5次,
  //就忽略,不需要每次都从头找起
	for (p = current; p->d.next; p = p->d.next) 
		if(p->d.failed++ > 4) 	//这儿咋总觉得哪里怪怪的
			current = p->d.next;
		
	

	p->d.next = new;
  pool->current = current ? current : new;
	return m;


ngx_palloc_large:开辟一个大内存检查后交给大内存链表管理。所以开辟的内存必定在大内存链表上。

/*
 * 1)判断pool->large链表上查询是否有NULL的,只在链表上往下查询3次,主要判断大数据块是否有被释放的,有就给它赋值,如果没有则只能跳出。
 * 2)然后往下新创建一个pool->large结构体,将刚开辟的空间赋给该新结构体管理。
*/

static void *ngx_palloc_large(ngx_pool_t *pool, size_t size)

    void              *p;
    ngx_uint_t         n;
    ngx_pool_large_t  *large;

    p = ngx_alloc(size, pool->log);//注意该函数是单独调用malloc,所以它的内存与内存池链表的内存是不连续的或者叫无关。
    if (p == NULL) 
        return NULL;
    

    n = 0;

	// 1)判断pool->large链表上查询是否有NULL的,只在链表上往下查询3次,主要判断大数据块是否有被释放的,有就给它赋值,如果没有则只能跳出
    for (large = pool->large; large; large = large->next) 
        if (large->alloc == NULL) 
            large->alloc = p;
            return p;
        

        if (n++ > 3) 
            break;
        
    

	// 2)新建pool->large结构体管理新内存,注意:是创建结构体的大小,属于小内存块(不要以为调用ngx_palloc_small后会造成递归调用)
    large = ngx_palloc_small(pool, sizeof(ngx_pool_large_t), 1);
    if (large == NULL) 
        ngx_free(p);
        return NULL;
    

    large->alloc = p;//刚开辟的内存交给pool->large链表管理
    large->next = pool->large;//插入新的pool->large结构体。注:插法是每次新的pool->large结构体插进第一个pool->large的后面。即pool->large->la3->la2->la1->NULL
    pool->large = large;

    return p;


ngx_pfree 内存清理

/**
 * 指定释放大内存块链表的某一块大内存。
 * 这里可以看到大内存的管理是支持释放某一块大内存的,所以上面的ngx_palloc_large函数每一次都检查前三个是否为空,
 * 确保前三个有内存空间可用,至于后面是否为空就只能不怎么关心了。
 */
ngx_int_t ngx_pfree(ngx_pool_t *pool, void *p)

    ngx_pool_large_t  *l;

	//遍历大内存链表,若找到想要释放的大内存则释放,否则返回错误NGX_DECLINED
    for (l = pool->large; l; l = l->next) 
        if (p == l->alloc) 
            ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0,
                           "free: %p", l->alloc);
            ngx_free(l->alloc);
            l->alloc = NULL;

            return NGX_OK;
        
    

    return NGX_DECLINED;


cleanup机制

pool->cleanup本身是一个链表,每个ngx_pool_cleanup_t的数据结构上,保存着内存数据的本身cleanup->data和回调清理函数cleanup->handler。

ngx_pool_cleanup_add:分配一个可以用于回调函数清理内存块的内存。内存块仍旧在p->d或p->large上(因为调用的是ngx_palloc)

/**
 * 1)创建一个新的ngx_pool_cleanup_t结构体并给其内部成员开辟内存空间。
 * 2)使用头插法将新的结构体插入清理链表。
 * 
 * 注意:初始化时回调c->handler设为NULL,并且返回值为返回当前结构体,所以该内存可以由用户自定义并且自行处理,非常灵活。
 * 
 * 实际上该函数注意是用来添加以下两个内容:
 * 1. 文件描述符
 * 2. 外部自定义回调函数可以来清理内存
 */
 */
ngx_pool_cleanup_t *ngx_pool_cleanup_add(ngx_pool_t *p, size_t size)

    ngx_pool_cleanup_t  *c;

	// 1)创建新的清理结构体和开辟空间
    c = ngx_palloc(p, sizeof(ngx_pool_cleanup_t));
    if (c == NULL) 
        return NULL;
    

    if (size) 
        c->data = ngx_palloc(p, size);//该函数调用samll或者large,所以内存块仍旧在p->d或p->large上
        if (c->data == NULL) 
            return NULL;
        
     else 
        c->data = NULL;
    

	// 2)使用头插法插入清理链表,并且回调设为NULL等待用户设置。
    c->handler = NULL;
    c->next = p->cleanup;

    p->cleanup = c;

    ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, p->log, 0, "add cleanup: %p", c);

    return c;

ngx_pool_run_cleanup_file:清除p->cleanup链表上的某个已打开的文件描述符fd占用的内存块(或者叫清除指定的文件描述符)

void ngx_pool_run_cleanup_file(ngx_pool_t *p, ngx_fd_t fd) 
	ngx_pool_cleanup_t *c;
	ngx_pool_cleanup_file_t *cf;
 
 	// 遍历清理链表
	for (c = p->cleanup; c; c = c->next) 
		if (c->handler == ngx_pool_cleanup_file) 
 
			cf = c->data;//因为为清理文件描述符,此时的c->data应为ngx_pool_cleanup_file_t的结构体类型
 			
 			// 判断是否是指定要删除的fd
			if (cf->fd == fd) 
				c->handler(cf); /* 调用ngx_pool_cleanup_file回调函数清理指定内存cf */
				c->handler = NULL;
				return;
			
		
	

ngx_pool_cleanup_file:ngx_pool_run_cleanup_file的回调函数。通过ngx_close_file里面去调用底层的close关闭掉对应的文件描述符。
ngx官方写的回调函数

void ngx_pool_cleanup_file(void *data) 
	ngx_pool_cleanup_file_t *c = data;
 
	ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, c->log, 0, "file cleanup: fd:%d",
			c->fd);
 
	if (ngx_close_file(c->fd) == NGX_FILE_ERROR) 
		ngx_log_error(NGX_LOG_ALERT, c->log, ngx_errno,
				ngx_close_file_n " \\"%s\\" failed", c->name);
	

ngx_pool_delete_file:这里是删除文件的回调函数,是连文件也删除。

/*
 * #define ngx_delete_file(name)    unlink((const char *) name)
 * #define ngx_close_file           close
 * 
 * 该函数调用了ngx_delete_file和ngx_close_file进行删除文件。
 * 1)调用了ngx_delete_file宏,而该宏调用底层的unlink删除文件。
 * 2)调用了ngx_close_file宏,而该宏调用底层的close删除文件
 * 
*/
void ngx_pool_delete_file(void *data)

    ngx_pool_cleanup_file_t  *c = data;

    ngx_err_t  err;

    ngx_log_debug2(NGX_LOG_DEBUG_ALLOC, c->log, 0, "file cleanup: fd:%d %s",
                   c->fd, c->name);

    if (ngx_delete_file(c->name) == NGX_FILE_ERROR) 
        err = ngx_errno;

        if (err != NGX_ENOENT) 
            ngx_log_error(NGX_LOG_CRIT, c->log, err,
                          ngx_delete_file_n " \\"%s\\" failed", c->name);
        
    

    if (ngx_close_file(c->fd) == NGX_FILE_ERROR) 
        ngx_log_error(NGX_LOG_ALERT, c->log, ngx_errno,
                      ngx_close_file_n " \\"%s\\" failed", c->name);
    

以上是关于Nginx 源码学习内存池 及 优秀案例赏析:Nginx内存池设计的主要内容,如果未能解决你的问题,请参考以下文章

2018年最好的医疗网站设计及配色赏析

Nginx 源码学习动态数组

Html5广告案例赏析

nginx源码分析--内存池

nginx源码分析——内存池

Flume-NG源码分析-整体结构及配置载入分析