Flink Checkpoint是否支持Kafka 数据消费状态的维护?
Posted 咬定青松
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Flink Checkpoint是否支持Kafka 数据消费状态的维护?相关的知识,希望对你有一定的参考价值。
本文首发微信公众号:码上观世界
使用Flink实时消费kafka数据时候,涉及到offset的状态维护,为了保证Flink作业重启或者运行时的Operator级别的失败重试,如果要做到“断点续跑”,需要Flink的Checkpoint的支持。问题是,如果简单的开启Flink的Checkpoint机制,而不需要额外的编码工作,是否能达到目的?为回答该问题,本文首先要研究Flink的Checkpoint的处理机制,然后再看Flink是否支持Kafka的状态存储,于是本文分以下四个部分:
Flink Checkpoint 状态快照(snapshotState)主要流程
Flink Checkpoint 状态初始化(initializeState)主要流程
Kafka Source Operator 对Flink Checkpoint实现
Kafka Source Operator状态恢复
为了准确描述起见,本文以Flink 1.12.x版本,Kafka客户端版本2.4.x为例说明。
Flink Checkpoint 状态快照(snapshotState)主要流程
我们已知 Flink Checkpoint由CheckpointCoordinator周期性发起,它通过向相关的tasks发送触发消息和从各tasks收集确认消息(Ack)来完成checkpoint。这里省略CheckpointCoordinator发起调用逻辑解析,直奔消息受体TaskExecutor,来看Checkpoint的执行流程,在TaskExecutor中获取Task实例,触发triggerCheckpointBarrier:
TaskExecutor.class
@Override
public CompletableFuture<Acknowledge> triggerCheckpoint(
ExecutionAttemptID executionAttemptID,
long checkpointId,
long checkpointTimestamp,
CheckpointOptions checkpointOptions)
...
final Task task = taskSlotTable.getTask(executionAttemptID);
if (task != null)
task.triggerCheckpointBarrier(checkpointId, checkpointTimestamp, checkpointOptions);
return CompletableFuture.completedFuture(Acknowledge.get());
...
Task是在TaskExecutor中的调度执行单元,也响应Checkpoint请求:
Task.class
public void triggerCheckpointBarrier(
final long checkpointID,
final long checkpointTimestamp,
final CheckpointOptions checkpointOptions)
...
final CheckpointMetaData checkpointMetaData =
new CheckpointMetaData(checkpointID, checkpointTimestamp);
invokable.triggerCheckpointAsync(checkpointMetaData, checkpointOptions);
...
其中的看点是invokable,为AbstractInvokable类型的对象,根据调用类动态实例化:
// now load and instantiate the task's invokable code
AbstractInvokable invokable =
loadAndInstantiateInvokable(
userCodeClassLoader.asClassLoader(), nameOfInvokableClass, env);
其中 nameOfInvokableClass参数 在Task初始化时传入,动态创建AbstractInvokable实例,比如以一个SourceOperator为例,其类名称为:
org.apache.flink.streaming.runtime.tasks.SourceOperatorStreamTask
从SourceOperatorStreamTask类定义来看,它又是StreamTask的子类:
class SourceOperatorStreamTask<T> extends StreamTask<T, SourceOperator<T, ?>>
triggerCheckpointAsync方法接连调用SourceOperatorStreamTask和StreamTask类的triggerCheckpointAsync方法,主要逻辑是在StreamTask的triggerCheckpointAsync方法中:
StreamTask.class
@Override
public Future<Boolean> triggerCheckpointAsync(
CheckpointMetaData checkpointMetaData, CheckpointOptions checkpointOptions)
...
triggerCheckpoint(checkpointMetaData, checkpointOptions)
...
private boolean triggerCheckpoint(
CheckpointMetaData checkpointMetaData, CheckpointOptions checkpointOptions)
throws Exception
// No alignment if we inject a checkpoint
CheckpointMetricsBuilder checkpointMetrics =
new CheckpointMetricsBuilder()
.setAlignmentDurationNanos(0L)
.setBytesProcessedDuringAlignment(0L);
...
boolean success =
performCheckpoint(checkpointMetaData, checkpointOptions, checkpointMetrics);
if (!success)
declineCheckpoint(checkpointMetaData.getCheckpointId());
return success;
private boolean performCheckpoint(
CheckpointMetaData checkpointMetaData,
CheckpointOptions checkpointOptions,
CheckpointMetricsBuilder checkpointMetrics)
throws Exception
...
subtaskCheckpointCoordinator.checkpointState(
checkpointMetaData,
checkpointOptions,
checkpointMetrics,
operatorChain,
this::isRunning);
...
其中subtaskCheckpointCoordinator是SubtaskCheckpointCoordinatorImpl类型实例,负责协调子任务相关的checkpoint工作:
/**
* Coordinates checkpointing-related work for a subtask (i.e. @link
* org.apache.flink.runtime.taskmanager.Task Task and @link StreamTask). Responsibilities:
*
* <ol>
* <li>build a snapshot (invokable)
* <li>report snapshot to the JobManager
* <li>action upon checkpoint notification
* <li>maintain storage locations
* </ol>
*/
@Internal
public interface SubtaskCheckpointCoordinator extends Closeable
下面是SubtaskCheckpointCoordinatorImpl实现类中的checkpointState主要逻辑:
SubtaskCheckpointCoordinatorImpl.class
@Override
public void checkpointState(
CheckpointMetaData metadata,
CheckpointOptions options,
CheckpointMetricsBuilder metrics,
OperatorChain<?, ?> operatorChain,
Supplier<Boolean> isRunning)
throws Exception
// All of the following steps happen as an atomic step from the perspective of barriers and
// records/watermarks/timers/callbacks.
// We generally try to emit the checkpoint barrier as soon as possible to not affect
// downstream
// checkpoint alignments
if (lastCheckpointId >= metadata.getCheckpointId())
LOG.info(
"Out of order checkpoint barrier (aborted previously?): >= ",
lastCheckpointId,
metadata.getCheckpointId());
channelStateWriter.abort(metadata.getCheckpointId(), new CancellationException(), true);
checkAndClearAbortedStatus(metadata.getCheckpointId());
return;
lastCheckpointId = metadata.getCheckpointId();
if (checkAndClearAbortedStatus(metadata.getCheckpointId()))
// broadcast cancel checkpoint marker to avoid downstream back-pressure due to
// checkpoint barrier align.
operatorChain.broadcastEvent(new CancelCheckpointMarker(metadata.getCheckpointId()));
return;
// Step (1): Prepare the checkpoint, allow operators to do some pre-barrier work.
// The pre-barrier work should be nothing or minimal in the common case.
operatorChain.prepareSnapshotPreBarrier(metadata.getCheckpointId());
// Step (2): Send the checkpoint barrier downstream
operatorChain.broadcastEvent(
new CheckpointBarrier(metadata.getCheckpointId(), metadata.getTimestamp(), options),
options.isUnalignedCheckpoint());
// Step (3): Prepare to spill the in-flight buffers for input and output
if (options.isUnalignedCheckpoint())
// output data already written while broadcasting event
channelStateWriter.finishOutput(metadata.getCheckpointId());
// Step (4): Take the state snapshot. This should be largely asynchronous, to not impact
// progress of the
// streaming topology
Map<OperatorID, OperatorSnapshotFutures> snapshotFutures =
new HashMap<>(operatorChain.getNumberOfOperators());
if (takeSnapshotSync(snapshotFutures, metadata, metrics, options, operatorChain, isRunning))
finishAndReportAsync(snapshotFutures, metadata, metrics, isRunning);
else
cleanup(snapshotFutures, metadata, metrics, new Exception("Checkpoint declined"));
在Step (1)中看到prepareSnapshotPreBarrier,在正式snapshot之前做了一些轻量级的准备工作,具体操作实现在OperatorChain中,依次调用链中每个StreamOperator的prepareSnapshotPreBarrier方法:
OperatorChain.class
public void prepareSnapshotPreBarrier(long checkpointId) throws Exception
// go forward through the operator chain and tell each operator
// to prepare the checkpoint
for (StreamOperatorWrapper<?, ?> operatorWrapper : getAllOperators())
if (!operatorWrapper.isClosed())
operatorWrapper.getStreamOperator().prepareSnapshotPreBarrier(checkpointId);
经过一系列快照检查验证、快照前的准备、向下游广播事件操作,最终落脚到本类的checkpointStreamOperator方法:
SubtaskCheckpointCoordinatorImpl.class
private static OperatorSnapshotFutures checkpointStreamOperator(
StreamOperator<?> op,
CheckpointMetaData checkpointMetaData,
CheckpointOptions checkpointOptions,
CheckpointStreamFactory storageLocation,
Supplier<Boolean> isRunning)
throws Exception
try
return op.snapshotState(
checkpointMetaData.getCheckpointId(),
checkpointMetaData.getTimestamp(),
checkpointOptions,
storageLocation);
catch (Exception ex)
if (isRunning.get())
LOG.info(ex.getMessage(), ex);
throw ex;
该方法又调用AbstractStreamOperator的snapshotState:
AbstractStreamOperator.class
@Override
public final OperatorSnapshotFutures snapshotState(
long checkpointId,
long timestamp,
CheckpointOptions checkpointOptions,
CheckpointStreamFactory factory)
throws Exception
return stateHandler.snapshotState(
this,
Optional.ofNullable(timeServiceManager),
getOperatorName(),
checkpointId,
timestamp,
checkpointOptions,
factory,
isUsingCustomRawKeyedState());
snapshotState又将checkpoint逻辑委派到StreamOperatorStateHandler。StreamOperatorStateHandler的逻辑下文再介绍。梳理上述snapshot逻辑流程,可视化表现为:
Flink Checkpoint 状态初始化(initializeState)主要流程
上文中提到的Task初始化启动会调用AbstractInvokable 的invoke方法,
// now load and instantiate the task's invokable code
AbstractInvokable invokable =
loadAndInstantiateInvokable(
userCodeClassLoader.asClassLoader(), nameOfInvokableClass, env);
// run the invokable
invokable.invoke();
invoke在其父类StreamTask中的invoke方法完成调用前、运行事件循环和调用后的Template 策略动作:
StreamTask.class
@Override
public final void invoke() throws Exception
beforeInvoke();
// final check to exit early before starting to run
if (canceled)
throw new CancelTaskException();
// let the task do its work
runMailboxLoop();
// if this left the run() method cleanly despite the fact that this was canceled,
// make sure the "clean shutdown" is not attempted
if (canceled)
throw new CancelTaskException();
afterInvoke();
在beforeInvoke方法中通过operatorChain的initializeStateAndOpenOperators进行状态初始化:
StreamTask.class
protected void beforeInvoke() throws Exception
operatorChain = new OperatorChain<>(this, recordWriter);
...
operatorChain.initializeStateAndOpenOperators(
createStreamTaskStateInitializer());
...
在operatorChain中触发当前链中所有StreamOperator:
OperatorChain.class
protected void initializeStateAndOpenOperators(
StreamTaskStateInitializer streamTaskStateInitializer) throws Exception
for (StreamOperatorWrapper<?, ?> operatorWrapper : getAllOperators(true))
StreamOperator<?> operator = operatorWrapper.getStreamOperator();
operator.initializeState(streamTaskStateInitializer);
operator.open();
继续跟进AbstractStreamOperator调用initializeState:
AbstractStreamOperator.class
@Override
public final void initializeState(StreamTaskStateInitializer streamTaskStateManager)
throws Exception
final StreamOperatorStateContext context =
streamTaskStateManager.streamOperatorStateContext(
getOperatorID(),
getClass().getSimpleName(),
getProcessingTimeService(),
this,
keySerializer,
streamTaskCloseableRegistry,
metrics,
config.getManagedMemoryFractionOperatorUseCaseOfSlot(
ManagedMemoryUseCase.STATE_BACKEND,
runtimeContext.getTaskManagerRuntimeInfo().getConfiguration(),
runtimeContext.getUserCodeClassLoader()),
isUsingCustomRawKeyedState());
stateHandler =
new StreamOperatorStateHandler(
context, getExecutionConfig(), streamTaskCloseableRegistry);
timeServiceManager = context.internalTimerServiceManager();
stateHandler.initializeOperatorState(this);
其中stateHandler.initializeOperatorState又将initializeOperatorState委派到了StreamOperatorStateHandler类,在其中完成具体StreamOperator子类的状态初始化。梳理初始化状态的逻辑,可视化表现为:
Kafka Source Operator 对Flink Checkpoint的支持
现在将Checkpoint的状态快照过程和状态初始化过程画在一起,会看到两者都汇总委派到StreamOperatorStateHandler来执行:
StreamOperatorStateHandler类中initializeOperatorState和snapshotState方法实现如下,主要完成的是参数的构建:
StreamOperatorStateHandler.class
public void initializeOperatorState(CheckpointedStreamOperator streamOperator)
throws Exception
CloseableIterable<KeyGroupStatePartitionStreamProvider> keyedStateInputs =
context.rawKeyedStateInputs();
CloseableIterable<StatePartitionStreamProvider> operatorStateInputs =
context.rawOperatorStateInputs();
StateInitializationContext initializationContext =
new StateInitializationContextImpl(
context.isRestored(), // information whether we restore or start for
// the first time
operatorStateBackend, // access to operator state backend
keyedStateStore, // access to keyed state backend
keyedStateInputs, // access to keyed state stream
operatorStateInputs); // access to operator state stream
streamOperator.initializeState(initializationContext);
public OperatorSnapshotFutures snapshotState(
CheckpointedStreamOperator streamOperator,
Optional<InternalTimeServiceManager<?>> timeServiceManager,
String operatorName,
long checkpointId,
long timestamp,
CheckpointOptions checkpointOptions,
CheckpointStreamFactory factory,
boolean isUsingCustomRawKeyedState)
throws CheckpointException
KeyGroupRange keyGroupRange =
null != keyedStateBackend
? keyedStateBackend.getKeyGroupRange()
: KeyGroupRange.EMPTY_KEY_GROUP_RANGE;
OperatorSnapshotFutures snapshotInProgress = new OperatorSnapshotFutures();
StateSnapshotContextSynchronousImpl snapshotContext =
new StateSnapshotContextSynchronousImpl(
checkpointId, timestamp, factory, keyGroupRange, closeableRegistry);
snapshotState(
streamOperator,
timeServiceManager,
operatorName,
checkpointId,
timestamp,
checkpointOptions,
factory,
snapshotInProgress,
snapshotContext,
isUsingCustomRawKeyedState);
return snapshotInProgress;
void snapshotState(
CheckpointedStreamOperator streamOperator,
Optional<InternalTimeServiceManager<?>> timeServiceManager,
String operatorName,
long checkpointId,
long timestamp,
CheckpointOptions checkpointOptions,
CheckpointStreamFactory factory,
OperatorSnapshotFutures snapshotInProgress,
StateSnapshotContextSynchronousImpl snapshotContext,
boolean isUsingCustomRawKeyedState)
throws CheckpointException
if (timeServiceManager.isPresent())
checkState(
keyedStateBackend != null,
"keyedStateBackend should be available with timeServiceManager");
final InternalTimeServiceManager<?> manager = timeServiceManager.get();
if (manager.isUsingLegacyRawKeyedStateSnapshots())
checkState(
!isUsingCustomRawKeyedState,
"Attempting to snapshot timers to raw keyed state, but this operator has custom raw keyed state to write.");
manager.snapshotToRawKeyedState(
snapshotContext.getRawKeyedOperatorStateOutput(), operatorName);
streamOperator.snapshotState(snapshotContext);
snapshotInProgress.setKeyedStateRawFuture(snapshotContext.getKeyedStateStreamFuture());
snapshotInProgress.setOperatorStateRawFuture(
snapshotContext.getOperatorStateStreamFuture());
if (null != operatorStateBackend)
snapshotInProgress.setOperatorStateManagedFuture(
operatorStateBackend.snapshot(
checkpointId, timestamp, factory, checkpointOptions));
if (null != keyedStateBackend)
snapshotInProgress.setKeyedStateManagedFuture(
keyedStateBackend.snapshot(
checkpointId, timestamp, factory, checkpointOptions));
值得一提的是两个方法中的StreamOperator参数要求是CheckpointedStreamOperator 类型:
public interface CheckpointedStreamOperator
void initializeState(StateInitializationContext context) throws Exception;
void snapshotState(StateSnapshotContext context) throws Exception;
比较下StreamOperator,其跟Checkpoint相关的三个方法定义如下:
虽然方法名字一样,参数不同,其实不用管这些,只需要知道StreamOperator将快照的相关逻辑委派到了StreamOperatorStateHandler,真正的快照逻辑都在CheckpointedStreamOperator中完成即可,于是,要想实现自定义快照逻辑,只需要实现CheckpointedStreamOperato接口,以SourceOperator为例,类定义:
public class SourceOperator<OUT, SplitT extends SourceSplit> extends AbstractStreamOperator<OUT>
implements OperatorEventHandler, PushingAsyncDataInput<OUT>
而AbstractStreamOperator的类定义为:
public abstract class AbstractStreamOperator<OUT>
implements StreamOperator<OUT>,
SetupableStreamOperator<OUT>,
CheckpointedStreamOperator,
Serializable
AbstractStreamOperator已经帮我们实现了相关方法,只需要extend AbstractStreamOperator,仍然以SourceOperator为例来看它的实现:
SourceOperator.class
private ListState<SplitT> readerState;
@Override
public void initializeState(StateInitializationContext context) throws Exception
super.initializeState(context);
final ListState<byte[]> rawState =
context.getOperatorStateStore().getListState(SPLITS_STATE_DESC);
readerState = new SimpleVersionedListState<>(rawState, splitSerializer);
@Override
public void snapshotState(StateSnapshotContext context) throws Exception
long checkpointId = context.getCheckpointId();
LOG.debug("Taking a snapshot for checkpoint ", checkpointId);
readerState.update(sourceReader.snapshotState(checkpointId));
可见SourceOperator将快照状态存储在内存中的SimpleVersionedListState中,snapshotState的具体操作转给了SourceReader,来看Flink Kafka Connector提供的KafkaSourceReader 如何实现snapshotState:
KafkaSourceReader.class
KafkaSourceReader extends SourceReaderBase implements SourceReader
@Override
public List<KafkaPartitionSplit> snapshotState(long checkpointId)
List<KafkaPartitionSplit> splits = super.snapshotState(checkpointId);
if (splits.isEmpty() && offsetsOfFinishedSplits.isEmpty())
offsetsToCommit.put(checkpointId, Collections.emptyMap());
else
Map<TopicPartition, OffsetAndMetadata> offsetsMap =
offsetsToCommit.computeIfAbsent(checkpointId, id -> new HashMap<>());
// Put the offsets of the active splits.
for (KafkaPartitionSplit split : splits)
// If the checkpoint is triggered before the partition starting offsets
// is retrieved, do not commit the offsets for those partitions.
if (split.getStartingOffset() >= 0)
offsetsMap.put(
split.getTopicPartition(),
new OffsetAndMetadata(split.getStartingOffset()));
// Put offsets of all the finished splits.
offsetsMap.putAll(offsetsOfFinishedSplits);
return splits;
上面是基于内存的状态存储,而持久化还需要外部系统的支持,继续探究StreamOperatorStateHandler的snapshot方法逻辑,其中有这么一段:
if (null != operatorStateBackend)
snapshotInProgress.setOperatorStateManagedFuture(
operatorStateBackend.snapshot(
checkpointId, timestamp, factory, checkpointOptions));
当配置了持久化后端存储,才会将状态数据持久化,以默认的OperatorStateBackend为例:
DefaultOperatorStateBackend.class
@Override
public RunnableFuture<SnapshotResult<OperatorStateHandle>> snapshot(
long checkpointId,
long timestamp,
@Nonnull CheckpointStreamFactory streamFactory,
@Nonnull CheckpointOptions checkpointOptions)
throws Exception
long syncStartTime = System.currentTimeMillis();
RunnableFuture<SnapshotResult<OperatorStateHandle>> snapshotRunner =
snapshotStrategy.snapshot(
checkpointId, timestamp, streamFactory, checkpointOptions);
return snapshotRunner;
snapshotStrategy.snapshot执行逻辑实现在DefaultOperatorStateBackendSnapshotStrategy中:
DefaultOperatorStateBackendSnapshotStrategy.class
@Override
public RunnableFuture<SnapshotResult<OperatorStateHandle>> snapshot(
final long checkpointId,
final long timestamp,
@Nonnull final CheckpointStreamFactory streamFactory,
@Nonnull final CheckpointOptions checkpointOptions)
throws IOException
...
for (Map.Entry<String, PartitionableListState<?>> entry :
registeredOperatorStatesDeepCopies.entrySet())
operatorMetaInfoSnapshots.add(
entry.getValue().getStateMetaInfo().snapshot());
...
// ... write them all in the checkpoint stream ...
DataOutputView dov = new DataOutputViewStreamWrapper(localOut);
OperatorBackendSerializationProxy backendSerializationProxy =
new OperatorBackendSerializationProxy(
operatorMetaInfoSnapshots, broadcastMetaInfoSnapshots);
backendSerializationProxy.write(dov);
...
for (Map.Entry<String, PartitionableListState<?>> entry :
registeredOperatorStatesDeepCopies.entrySet())
PartitionableListState<?> value = entry.getValue();
long[] partitionOffsets = value.write(localOut);
状态数据有元数据信息和状态本身的数据,状态数据通过PartitionableListState的write方法写入文件系统:
PartitionableListState.class
public long[] write(FSDataOutputStream out) throws IOException
long[] partitionOffsets = new long[internalList.size()];
DataOutputView dov = new DataOutputViewStreamWrapper(out);
for (int i = 0; i < internalList.size(); ++i)
S element = internalList.get(i);
partitionOffsets[i] = out.getPos();
getStateMetaInfo().getPartitionStateSerializer().serialize(element, dov);
return partitionOffsets;
Kafka Source Operator状态恢复
上面一部分介绍了Kafka Source Operator对Flink Checkpoint的支持,也是涉及到snapshot和initialState两个部分,但主要介绍了snapshot的逻辑,再来看SourceOperator的如何初始化状态的:
SourceOperator.class
@Override
public void initializeState(StateInitializationContext context) throws Exception
super.initializeState(context);
final ListState<byte[]> rawState =
context.getOperatorStateStore().getListState(SPLITS_STATE_DESC);
readerState = new SimpleVersionedListState<>(rawState, splitSerializer);
context.getOperatorStateStore使用了DefaultOperatorStateBackend的getListState方法:
DefaultOperatorStateBackend.class
private final Map<String, PartitionableListState<?>> registeredOperatorStates;
@Override
public <S> ListState<S> getListState(ListStateDescriptor<S> stateDescriptor) throws Exception
return getListState(stateDescriptor, OperatorStateHandle.Mode.SPLIT_DISTRIBUTE);
private <S> ListState<S> getListState(
ListStateDescriptor<S> stateDescriptor, OperatorStateHandle.Mode mode)
throws StateMigrationException
...
PartitionableListState<S> partitionableListState =
(PartitionableListState<S>) registeredOperatorStates.get(name);
...
return partitionableListState;
而getListState仅仅是从名叫registeredOperatorStates的Map>中获取,那问题来了,registeredOperatorStates从哪里来?为了找到答案,这部分通过一个Kafka消费示例来演示和说明,首先创建KafkaSource:
KafkaSource<MetaAndValue> kafkaSource =
KafkaSource.<ObjectNode>builder()
.setBootstrapServers(Constants.kafkaServers)
.setGroupId(KafkaSinkIcebergExample.class.getName())
.setTopics(topic)
.setDeserializer(recordDeserializer)
.setStartingOffsets(OffsetsInitializer.earliest())
.setBounded(OffsetsInitializer.latest())
.setProperties(properties)
.build();
并且设置重启策略:StreamOperator失败后立即重启一次好快照间隔:100毫秒1次:
env.getConfig().setRestartStrategy(RestartStrategies.fixedDelayRestart(1, Time.seconds(0)));
env.getCheckpointConfig().setCheckpointInterval(1 * 100L);
然后在Kafka反序列时候,设置解析100条记录后抛出异常:
public static class TestingKafkaRecordDeserializer
implements KafkaRecordDeserializer<MetaAndValue>
private static final long serialVersionUID = -3765473065594331694L;
private transient Deserializer<String> deserializer = new StringDeserializer();
int parseNum=0;
@Override
public void deserialize(
ConsumerRecord<byte[], byte[]> record, Collector<MetaAndValue> collector)
if (deserializer == null)
deserializer = new StringDeserializer();
MetaAndValue metaAndValue=new MetaAndValue(
new TopicPartition(record.topic(), record.partition()),
deserializer.deserialize(record.topic(), record.value()), record.offset());
if(parseNum++>100)
Map<String,Object> metaData=metaAndValue.getMetaData();
throw new RuntimeException("for test");
collector.collect(metaAndValue);
JobMaster初始化并创建Scheduler时候从Checkpoint进行状态初始化,如果从Checkpoint初始化失败,则试图从Savepoint恢复。
SchedulerBase.class
private ExecutionGraph createAndRestoreExecutionGraph(
JobManagerJobMetricGroup currentJobManagerJobMetricGroup,
ShuffleMaster<?> shuffleMaster,
JobMasterPartitionTracker partitionTracker,
ExecutionDeploymentTracker executionDeploymentTracker,
long initializationTimestamp)
throws Exception
ExecutionGraph newExecutionGraph =
createExecutionGraph(
currentJobManagerJobMetricGroup,
shuffleMaster,
partitionTracker,
executionDeploymentTracker,
initializationTimestamp);
final CheckpointCoordinator checkpointCoordinator =
newExecutionGraph.getCheckpointCoordinator();
if (checkpointCoordinator != null)
// check whether we find a valid checkpoint
if (!checkpointCoordinator.restoreInitialCheckpointIfPresent(
new HashSet<>(newExecutionGraph.getAllVertices().values())))
// check whether we can restore from a savepoint
tryRestoreExecutionGraphFromSavepoint(
newExecutionGraph, jobGraph.getSavepointRestoreSettings());
return newExecutionGraph;
最后回到熟悉的CheckpointCoordinator,在其方法restoreLatestCheckpointedStateInternal中从Checkpoint目录加载最新快照状态:
CheckpointCoordinator.class
public boolean restoreInitialCheckpointIfPresent(final Set<ExecutionJobVertex> tasks)
throws Exception
final OptionalLong restoredCheckpointId =
restoreLatestCheckpointedStateInternal(
tasks,
OperatorCoordinatorRestoreBehavior.RESTORE_IF_CHECKPOINT_PRESENT,
false, // initial checkpoints exist only on JobManager failover. ok if not
// present.
false); // JobManager failover means JobGraphs match exactly.
return restoredCheckpointId.isPresent();
private OptionalLong restoreLatestCheckpointedStateInternal(
final Set<ExecutionJobVertex> tasks,
final OperatorCoordinatorRestoreBehavior operatorCoordinatorRestoreBehavior,
final boolean errorIfNoCheckpoint,
final boolean allowNonRestoredState)
throws Exception
...
// Recover the checkpoints, TODO this could be done only when there is a new leader, not
// on each recovery
completedCheckpointStore.recover();
// Restore from the latest checkpoint
CompletedCheckpoint latest =
completedCheckpointStore.getLatestCheckpoint(isPreferCheckpointForRecovery);
...
// re-assign the task states
final Map<OperatorID, OperatorState> operatorStates = latest.getOperatorStates();
StateAssignmentOperation stateAssignmentOperation =
new StateAssignmentOperation(
latest.getCheckpointID(), tasks, operatorStates, allowNonRestoredState);
stateAssignmentOperation.assignStates();
...
上面是应用初始启动的状态恢复逻辑,那在应用运行期间的Operator失败重启的逻辑又是什么样的呢?实际上JobMaster会监听任务运行状态,并做相应处理,比如下面一个失败处理链路逻辑:
UpdateSchedulerNgOnInternalFailuresListener.class
@Override
public void notifyTaskFailure(
final ExecutionAttemptID attemptId,
final Throwable t,
final boolean cancelTask,
final boolean releasePartitions)
final TaskExecutionState state =
new TaskExecutionState(jobId, attemptId, ExecutionState.FAILED, t);
schedulerNg.updateTaskExecutionState(
new TaskExecutionStateTransition(state, cancelTask, releasePartitions));
SchedulerBase.class
@Override
public final boolean updateTaskExecutionState(
final TaskExecutionStateTransition taskExecutionState)
final Optional<ExecutionVertexID> executionVertexId =
getExecutionVertexId(taskExecutionState.getID());
boolean updateSuccess = executionGraph.updateState(taskExecutionState);
if (updateSuccess)
checkState(executionVertexId.isPresent());
if (isNotifiable(executionVertexId.get(), taskExecutionState))
updateTaskExecutionStateInternal(executionVertexId.get(), taskExecutionState);
return true;
else
return false;
DefaultScheduler.class
@Override
protected void updateTaskExecutionStateInternal(
final ExecutionVertexID executionVertexId,
final TaskExecutionStateTransition taskExecutionState)
schedulingStrategy.onExecutionStateChange(
executionVertexId, taskExecutionState.getExecutionState());
maybeHandleTaskFailure(taskExecutionState, executionVertexId);
private void maybeHandleTaskFailure(
final TaskExecutionStateTransition taskExecutionState,
final ExecutionVertexID executionVertexId)
if (taskExecutionState.getExecutionState() == ExecutionState.FAILED)
final Throwable error = taskExecutionState.getError(userCodeLoader);
handleTaskFailure(executionVertexId, error);
private void handleTaskFailure(
final ExecutionVertexID executionVertexId, @Nullable final Throwable error)
setGlobalFailureCause(error);
notifyCoordinatorsAboutTaskFailure(executionVertexId, error);
final FailureHandlingResult failureHandlingResult =
executionFailureHandler.getFailureHandlingResult(executionVertexId, error);
maybeRestartTasks(failureHandlingResult);
private void maybeRestartTasks(final FailureHandlingResult failureHandlingResult)
if (failureHandlingResult.canRestart())
//调用restartTasks
restartTasksWithDelay(failureHandlingResult);
else
failJob(failureHandlingResult.getError());
private Runnable restartTasks(
final Set<ExecutionVertexVersion> executionVertexVersions,
final boolean isGlobalRecovery)
return () ->
final Set<ExecutionVertexID> verticesToRestart =
executionVertexVersioner.getUnmodifiedExecutionVertices(
executionVertexVersions);
removeVerticesFromRestartPending(verticesToRestart);
resetForNewExecutions(verticesToRestart);
try
restoreState(verticesToRestart, isGlobalRecovery);
catch (Throwable t)
handleGlobalFailure(t);
return;
schedulingStrategy.restartTasks(verticesToRestart);
;
SchedulerBase.class
protected void restoreState(
final Set<ExecutionVertexID> vertices, final boolean isGlobalRecovery)
throws Exception
...
if (isGlobalRecovery)
final Set<ExecutionJobVertex> jobVerticesToRestore =
getInvolvedExecutionJobVertices(vertices);
checkpointCoordinator.restoreLatestCheckpointedStateToAll(jobVerticesToRestore, true);
else
final Map<ExecutionJobVertex, IntArrayList> subtasksToRestore =
getInvolvedExecutionJobVerticesAndSubtasks(vertices);
final OptionalLong restoredCheckpointId =
checkpointCoordinator.restoreLatestCheckpointedStateToSubtasks(
subtasksToRestore.keySet());
// Ideally, the Checkpoint Coordinator would call OperatorCoordinator.resetSubtask, but
// the Checkpoint Coordinator is not aware of subtasks in a local failover. It always
// assigns state to all subtasks, and for the subtask execution attempts that are still
// running (or not waiting to be deployed) the state assignment has simply no effect.
// Because of that, we need to do the "subtask restored" notification here.
// Once the Checkpoint Coordinator is properly aware of partial (region) recovery,
// this code should move into the Checkpoint Coordinator.
final long checkpointId =
restoredCheckpointId.orElse(OperatorCoordinator.NO_CHECKPOINT);
notifyCoordinatorsOfSubtaskRestore(subtasksToRestore, checkpointId);
...
上述整个链路涉及到DefaultScheduler和SchedulerBase,实际上还是在一个运行对象实例中进行的,两者关系为:
public abstract class SchedulerBase implements SchedulerNG
public class DefaultScheduler extends SchedulerBase implements SchedulerOperations
最后又回到了熟悉的CheckpointCoordinator:
CheckpointCoordinator.class
public OptionalLong restoreLatestCheckpointedStateToSubtasks(
final Set<ExecutionJobVertex> tasks) throws Exception
// when restoring subtasks only we accept potentially unmatched state for the
// following reasons
// - the set frequently does not include all Job Vertices (only the ones that are part
// of the restarted region), meaning there will be unmatched state by design.
// - because what we might end up restoring from an original savepoint with unmatched
// state, if there is was no checkpoint yet.
return restoreLatestCheckpointedStateInternal(
tasks,
OperatorCoordinatorRestoreBehavior
.SKIP, // local/regional recovery does not reset coordinators
false, // recovery might come before first successful checkpoint
true); // see explanation above
在schedulingStrategy.restartTasks中,每个Task 分配的状态被封装在JobManagerTaskRestore 中,jobManagerTaskRestore 会作为TaskDeploymentDescriptor 的一个属性下发到TaskEXecutor 中。当TaskDeploymentDescriptor被提交给TaskExecutor 之后,TaskExcutor 会使用TaskStateManager 用于管理当前Task的状态,TaskStateManager 对象会基于分配的JobManagerTaskRestore 和本地状态存储TaskLocalStateStore进行创建:
TaskEXecutor.class
@Override
public CompletableFuture<Acknowledge> submitTask(
TaskDeploymentDescriptor tdd, JobMasterId jobMasterId, Time timeout)
...
final TaskLocalStateStore localStateStore =
localStateStoresManager.localStateStoreForSubtask(
jobId,
tdd.getAllocationId(),
taskInformation.getJobVertexId(),
tdd.getSubtaskIndex());
final JobManagerTaskRestore taskRestore = tdd.getTaskRestore();
final TaskStateManager taskStateManager =
new TaskStateManagerImpl(
jobId,
tdd.getExecutionAttemptId(),
localStateStore,
taskRestore,
checkpointResponder);
...
//启动 Task
启动Task会调用StreamTask的invoke方法,并在beforeInvoke中进行如下初始化:
StreamTask.class
protected void beforeInvoke() throws Exception
...
operatorChain.initializeStateAndOpenOperators(
createStreamTaskStateInitializer());
...
public StreamTaskStateInitializer createStreamTaskStateInitializer()
InternalTimeServiceManager.Provider timerServiceProvider =
configuration.getTimerServiceProvider(getUserCodeClassLoader());
return new StreamTaskStateInitializerImpl(
getEnvironment(),
stateBackend,
TtlTimeProvider.DEFAULT,
timerServiceProvider != null
? timerServiceProvider
: InternalTimeServiceManagerImpl::create);
再回到operatorChain的initializeStateAndOpenOperators方法:
OperatorChain.class
protected void initializeStateAndOpenOperators(
StreamTaskStateInitializer streamTaskStateInitializer) throws Exception
for (StreamOperatorWrapper<?, ?> operatorWrapper : getAllOperators(true))
StreamOperator<?> operator = operatorWrapper.getStreamOperator();
operator.initializeState(streamTaskStateInitializer);
operator.open();
其中StreamOperator的initializeState调用了子类AbstractStreamOperator的initializeState,并在其中创建StreamOperatorStateContext:
AbstractStreamOperator.class
@Override
public final void initializeState(StreamTaskStateInitializer streamTaskStateManager)
throws Exception
final TypeSerializer<?> keySerializer =
config.getStateKeySerializer(getUserCodeClassloader());
final StreamTask<?, ?> containingTask = Preconditions.checkNotNull(getContainingTask());
final CloseableRegistry streamTaskCloseableRegistry =
Preconditions.checkNotNull(containingTask.getCancelables());
final StreamOperatorStateContext context =
streamTaskStateManager.streamOperatorStateContext(
getOperatorID(),
getClass().getSimpleName(),
getProcessingTimeService(),
this,
keySerializer,
streamTaskCloseableRegistry,
metrics,
config.getManagedMemoryFractionOperatorUseCaseOfSlot(
ManagedMemoryUseCase.STATE_BACKEND,
runtimeContext.getTaskManagerRuntimeInfo().getConfiguration(),
runtimeContext.getUserCodeClassLoader()),
isUsingCustomRawKeyedState());
stateHandler =
new StreamOperatorStateHandler(
context, getExecutionConfig(), streamTaskCloseableRegistry);
timeServiceManager = context.internalTimerServiceManager();
stateHandler.initializeOperatorState(this);
runtimeContext.setKeyedStateStore(stateHandler.getKeyedStateStore().orElse(null));
从快照中读取状态数据并恢复的实际动作就隐藏在streamOperatorStateContext的创建过程中:
StreamTaskStateInitializerImpl.class
@Override
public StreamOperatorStateContext streamOperatorStateContext(
// -------------- Keyed State Backend --------------
keyedStatedBackend =
keyedStatedBackend(
keySerializer,
operatorIdentifierText,
prioritizedOperatorSubtaskStates,
streamTaskCloseableRegistry,
metricGroup,
managedMemoryFraction);
// -------------- Operator State Backend --------------
operatorStateBackend =
operatorStateBackend(
operatorIdentifierText,
prioritizedOperatorSubtaskStates,
streamTaskCloseableRegistry);
// -------------- Raw State Streams --------------
rawKeyedStateInputs =
rawKeyedStateInputs(
prioritizedOperatorSubtaskStates
.getPrioritizedRawKeyedState()
.iterator());
streamTaskCloseableRegistry.registerCloseable(rawKeyedStateInputs);
rawOperatorStateInputs =
rawOperatorStateInputs(
prioritizedOperatorSubtaskStates
.getPrioritizedRawOperatorState()
.iterator());
streamTaskCloseableRegistry.registerCloseable(rawOperatorStateInputs);
// -------------- Internal Timer Service Manager --------------
if (keyedStatedBackend != null)
// if the operator indicates that it is using custom raw keyed state,
// then whatever was written in the raw keyed state snapshot was NOT written
// by the internal timer services (because there is only ever one user of raw keyed
// state);
// in this case, timers should not attempt to restore timers from the raw keyed
// state.
final Iterable<KeyGroupStatePartitionStreamProvider> restoredRawKeyedStateTimers =
(prioritizedOperatorSubtaskStates.isRestored()
&& !isUsingCustomRawKeyedState)
? rawKeyedStateInputs
: Collections.emptyList();
timeServiceManager =
timeServiceManagerProvider.create(
keyedStatedBackend,
environment.getUserCodeClassLoader().asClassLoader(),
keyContext,
processingTimeService,
restoredRawKeyedStateTimers);
else
timeServiceManager = null;
// -------------- Preparing return value --------------
return new StreamOperatorStateContextImpl(
prioritizedOperatorSubtaskStates.isRestored(),
operatorStateBackend,
keyedStatedBackend,
timeServiceManager,
rawOperatorStateInputs,
rawKeyedStateInputs);
到此为止,我们完成了梳理Flink Kafka Source Operator Checkpoint的状态恢复流程,这部分逻辑大致可以划分为两大部分:基于StateInitializationContext的状态初始化和从Checkpoint恢复状态并生成StateInitializationContext。后者的恢复过程远比文章中介绍的复杂,实际上JobMaster监听到任务失败后,会从Checkpoint持久化数据中装载最近一个快照的状态元数据,然后再将状态重新分配各子任务,特别是应用重启级别的恢复,还涉及到算子拓扑结构和并行度的改变,JobMaster状态恢复之后再提交任务重启请求,在TaskManager端还可能再从本地快照(如果启用的话)恢复状态数据。TaskManager端的状态恢复以创建完成StreamOperatorStateContext为标志,它包装了快照恢复后的完整数据,接下来就回到了正常的StreamOperator的InitialState方法调用流程。
总结
本文从Flink Checkpoint的处理流程(包括snapshot的创建和初始化两部分)和Kafka对Flink Checkpoint的支持几个部分,从Flink的代码实现角度来确定Flink的Checkpoint是支持Kafka的数据消费状态维护的,但是这个状态只是从StateInitializationContext对象中获取的,为了进一步验证StateInitializationContext的状态是否从Checkpoint持久化中获取,本文第四部分结合实验,从Flink应用重启和运行时Operator失败重试来梳理Flink的状态恢复逻辑,确定Flink是支持从Checkpoint或Savepoint恢复状态。
最后,根据前文的分析,开发者在开发Flink应用时需要注意的是:虽然Flink能够将Kafka消费状态恢复到最近一个Checkpoint快照状态,但是无法避免在两个快照之间的重复消费。一个典型情景是Sink端不支持幂等时,有可能造成数据的重复,例如PrintSink就无法撤回快照之间输出的数据。另外,在未开启Flink Checkpoint时需要依赖Kafka Client自身的commit的状态来实现状态维护。
以上是关于Flink Checkpoint是否支持Kafka 数据消费状态的维护?的主要内容,如果未能解决你的问题,请参考以下文章
Flink Checkpoint是否支持Kafka 数据消费状态的维护?
ClassNotFoundException:org.apache.flink.streaming.api.checkpoint.CheckpointNotifier 同时消费一个 kafka 主题