Flink学习:Flink常见报错
Posted 我爱夜来香A
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Flink学习:Flink常见报错相关的知识,希望对你有一定的参考价值。
Flink Error
- 一、org.apache.flink.table.api.TableException: Only the first field can reference an atomic type
- 二、Only tables that originate from Scala DataStreams can be converted to Scala DataStreams
- 三、Field reference expression or alias on field expression expected.
- 四、Result field does not match requested type. Requested: Long; Actual: Integer
一、org.apache.flink.table.api.TableException: Only the first field can reference an atomic type
程序如下:
import org.apache.flink.api.scala.createTypeInformation
import org.apache.flink.streaming.api.environment._
import org.apache.flink.api.java.tuple._
import org.apache.flink.table.api.scala.table2TableConversions
import org.apache.flink.table.api.TableEnvironment, Types
import org.apache.flink.table.sources.CsvTableSource
import org.apache.flink.types.Row
object sqlTest
def main(args: Array[String]): Unit =
val sEnv = StreamExecutionEnvironment.getExecutionEnvironment
val tEnv = TableEnvironment.getTableEnvironment(sEnv)
val stream = sEnv.fromElements((192,"nie"),(200,"hu"))
tEnv.registerDataStream("testTable", stream, "id,name")
val result = tEnv.sqlQuery("select * from testTable where id = 192")
看网上解释:tuple要使用java包里面的(scala import org.apache.flink.api.java.tuple._),而不是scala自带的tuple,不然也会认为是geneic类型,导致报错,修改后代码如下:
import org.apache.flink.api.scala.createTypeInformation
import org.apache.flink.streaming.api.environment._
import org.apache.flink.api.java.tuple._
import org.apache.flink.table.api.scala.table2TableConversions
import org.apache.flink.table.api.TableEnvironment, Types
import org.apache.flink.table.sources.CsvTableSource
import org.apache.flink.types.Row
object sqlTest
def main(args: Array[String]): Unit =
val sEnv = StreamExecutionEnvironment.getExecutionEnvironment
val tEnv = TableEnvironment.getTableEnvironment(sEnv)
val stream = sEnv.fromElements(
new Tuple2(192,"nie"),
new Tuple2(200,"zhu"))
tEnv.registerDataStream("testTable", stream, "id,name")
val result = tEnv.sqlQuery("select * from testTable where id = 192")
//result.toRetractStream[Row].print()
//val csvSource = new CsvTableSource("path",)
//tEnv.registerTableSource("CsvTable",csvSource)
二、Only tables that originate from Scala DataStreams can be converted to Scala DataStreams
程序如下:
import org.apache.flink.api.scala.createTypeInformation
import org.apache.flink.api.java.tuple._
import org.apache.flink.api.scala.ExecutionEnvironment
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
import org.apache.flink.table.api.scala._
import org.apache.flink.table.api.TableEnvironment
import org.apache.flink.types.Row
object SqlTest
def main(args: Array[String]): Unit =
val streamEnv = StreamExecutionEnvironment.getExecutionEnvironment
val tEnv = TableEnvironment.getTableEnvironment(streamEnv)
//val InmemCatalog = new InMemoryExternalCatalog()
//tEnv.registerExternalCatalog("externalCatalog",InmemCatalog)
val stream = streamEnv.fromElements(new Tuple2(192,"nie"),
new Tuple2(200,"hu"))
tEnv.registerDataStream("testTable", stream, "id,name")
//val result = tEnv.scan("testTable").select("id")
//print(result)
val result = tEnv.sqlQuery("select * from testTable where id = 192")
result.toRetractStream[(Long,String)].print()
streamEnv.execute("test")
//tEnv.sqlUpdate("insert into csv_output_table select product,amount from sensors where type = 'temperature")
后来发现是导入错了包
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
应该改为
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
三、Field reference expression or alias on field expression expected.
还是上面那个程序,改完之后,还报上述错误
下面这段代码有错误
tEnv.registerDataStream("testTable", stream, "id,name")
应该改为
tEnv.registerDataStream("testTable", stream, 'id, 'name),用单引号括起来
如果使用import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment,使用单引号括起来是会报错的
四、Result field does not match requested type. Requested: Long; Actual: Integer
还是上面那段程序,还有报错
result.toRetractStream[(Long,String)].print()
后面中的类型应该改为Row
result.toRetractStream[Row].print()
以上是关于Flink学习:Flink常见报错的主要内容,如果未能解决你的问题,请参考以下文章