第十届“泰迪杯”数据挖掘挑战赛B题:电力系统负荷预测分析 31页省一等奖论文及代码
Posted Better Bench
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第十届“泰迪杯”数据挖掘挑战赛B题:电力系统负荷预测分析 31页省一等奖论文及代码相关的知识,希望对你有一定的参考价值。
相关链接
(1)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题一Baseline方案
(2)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题一ARIMA、AutoARIMA、LSTM、Prophet 多方案实现
(3【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题二 时间突变分析 Python实现
1 题目
一、问题背景
电力系统负荷(电力需求量,即有功功率)预测是指充分考虑历史的系统负荷、经济状况、气象条件和社会事件等因素的影响,对未来一段时间的系统负荷做出预测。负荷预测是电力系统规划与调度的一项重要内容。短期(两周以内)预测是电网内部机组启停、调度和运营计划制定的基础;中期(未来数月)预测可为保障企业生产和社会生活用电,合理安排电网的运营与检修决策提供支持;长期(未来数年)预测可为电网改造、扩建等计划的制定提供参考,以提高电力系统的经济效益和社会效益。
复杂多变的气象条件和社会事件等不确定因素都会对电力系统负荷造成一定的影响,使得传统负荷预测模型的应用存在一定的局限性。同时,随着电力系统负荷结构的多元化,也使得模型应用的效果有所降低,因此电力系统负荷预测问题亟待进一步研究。
二、解决问题
1.地区负荷的中短期预测分析
根据附件中提供的某地区电网间隔15分钟的负荷数据,建立中短期负荷预测模型:
(1)给出该地区电网未来10天间隔15分钟的负荷预测结果,并分析其预测精度;
(2)给出该地区电网未来3个月日负荷的最大值和最小值预测结果,以及相应达到负荷最大值和最小值的时间,并分析其预测精度。
2.行业负荷的中期预测分析
对不同行业的用电负荷进行中期预测分析,能够为电网运营与调度决策提供重要依据。特别是在新冠疫情、国家“双碳”目标等背景下,通过对大工业、非普工业、普通工业和商业等行业的用电负荷进行预测,有助于掌握各行业的生产和经营状况、复工复产和后续发展走势,进而指导和辅助行业的发展决策。请根据附件中提供的各行业每天用电负荷相关数据,建立数学模型研究下面问题:
(1)挖掘分析各行业用电负荷突变的时间、量级和可能的原因。
(2)给出该地区各行业未来3个月日负荷最大值和最小值的预测结果,并对其预测精度做出分析。
(3)根据各行业的实际情况,研究国家“双碳”目标对各行业未来用电负荷可能产生的影响,并对相关行业提出有针对性的建议。
2 31页论文
https://www.betterbench.top/#/35/detail
摘要: 电力系统负荷预测是根据电力负荷的历史数据,搜集历史天气数据、降水量等天气影响,经济对的繁荣和萧条,社会现状等基础数据,并作为预测支撑,搜寻负荷与其他相关因素的内在联系,从而达到精准预测负荷的目的。利用机器学习模型对电力负荷进行了数据挖掘。首先对样例数据集进行了常规的缺失值、异常值、标准化等数据处理,运用K折交叉验证方法验证并挑选了最优的模型和方法。随后,使用了SPSS分析相关性热图提取特征。最终利用Auto TS模型,以MAE,SMAPE为评价指标,实现了电力系统负荷的预测。
关键词:电力系统;负荷预测;Auto TS模型;数据挖掘
以上是关于第十届“泰迪杯”数据挖掘挑战赛B题:电力系统负荷预测分析 31页省一等奖论文及代码的主要内容,如果未能解决你的问题,请参考以下文章
第十届“泰迪杯”数据挖掘挑战赛B题:电力系统负荷预测分析 问题二 时间突变分析 Python实现
第十届“泰迪杯”数据挖掘挑战赛B题:电力系统负荷预测分析 ARIMAAutoARIMALSTMProphet多元Prophet 实现
第十届“泰迪杯”数据挖掘挑战赛B题:电力系统负荷预测分析 Baseline
第十届“泰迪杯”数据挖掘挑战赛B题:电力系统负荷预测分析 Baseline
第十届“泰迪杯”数据挖掘挑战赛B题:电力系统负荷预测分析 ARIMAAutoARIMALSTMProphet多元Prophet 实现