实践教程之使用 PolarDB-X 与 Flink 搭建实时数据大屏

Posted 阿里云云栖号

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了实践教程之使用 PolarDB-X 与 Flink 搭建实时数据大屏相关的知识,希望对你有一定的参考价值。

PolarDB-X 为了方便用户体验,提供了免费的实验环境,您可以在实验环境里体验 PolarDB-X 的安装部署和各种内核特性。除了免费的实验,PolarDB-X 也提供免费的视频课程,手把手教你玩转 PolarDB-X 分布式数据库。

本期实验将指导您使用 PolarDB-X 与Flink搭建实时数据大屏。

本期免费实验地址

本期教学视频地址

前置准备

假设已经根据前一讲内容完成了PolarDB-X的搭建部署,可以成功链接上PolarDB-X数据库。

在PolarDB-X中准备订单表

PolarDB-X支持通过mysql Client命令行、第三方客户端以及符合MySQL交互协议的第三方程序代码进行连接。本实验使用MySQL Client命令行连接到PolarDB-X数据库。

本步骤将指导您如何连接PolarDB-X数据库,并创建测试库、测试表和测试数据。

1.执行如下命令,安装MySQL。

yum install mysql -y

2.执行如下命令,查看MySQL版本号。

mysql -V

返回结果如下,表示您已成功安装MySQL。

3.执行如下命令,登录PolarDB-X数据库。

说明:

本实验场景中的PolarDB-X数据库用户名和密码已预设,请您使用下方命令登录即可。
如遇到mysql: [Warning] Using a password on the command line interface can be insecure.ERROR 2013 (HY000): Lost connection to MySQL server at 'reading initial communication packet', system error: 0报错,请您稍等一分钟,重新执行登录命令即可。
mysql -h127.0.0.1 -P8527 -upolardbx_root -p123456
返回结果如下,表示您已成功登录PolarDB-X数据库。

4.执行如下SQL语句,创建测试库mydb。

create database mydb;

5.执行如下SQL语句,使用测试库mydb。

use mydb;

6.执行如下SQL语句,创建订单表orders。

CREATE TABLE `orders` (  `order_id` int(11) NOT NULL AUTO_INCREMENT,  `order_date` datetime NOT NULL,  `customer_name` varchar(255) NOT NULL,  `price` decimal(10, 5) NOT NULL,  `product_id` int(11) NOT NULL,  `order_status` tinyint(1) NOT NULL,  PRIMARY KEY (`order_id`) )AUTO_INCREMENT = 10001;

7.执行如下SQL语句,给订单表orders中插入数据。

INSERT INTO orders VALUES (default, '2020-07-30 10:08:22', 'Jark', 50.50, 102, false),        (default, '2020-07-30 10:11:09', 'Sally', 15.00, 105, false),        (default, '2020-07-30 12:00:30', 'Edward', 25.25, 106, false);

8.输入exit退出数据库。

运行Flink

本步骤将指导您如何下载并运行Flink。

1.安装JDK。

a.执行如下命令,使用yum安装JDK 1.8。

yum -y install java-1.8.0-openjdk*

b.执行如下命令,查看是否安装成功。

java -version

返回结果如下,表示您已成功安装JDK 1.8。

2.下载Flink和Flink CDC MySQL Connector。

a.执行如下命令,下载Flink。

wget https://labfileapp.oss-cn-hangzhou.aliyuncs.com/PolarDB-X/flink-1.13.6-bin-scala_2.11.tgz

b.执行如下命令,解压Flink。

tar xzvf flink-1.13.6-bin-scala_2.11.tgz

c.执行如下命令,进入lib目录。

cd flink-1.13.6/lib/

d.执行如下命令,下载flink-sql-connector-mysql-cdc。

wget https://labfileapp.oss-cn-hangzhou.aliyuncs.com/PolarDB-X/flink-sql-connector-mysql-cdc-2.2.1.jar

e.执行如下命令,返回Flink目录。

cd ..

3.启动Flink。

a.执行如下命令,启动Flink。

./bin/start-cluster.sh

b.执行如下命令,连接Flink。

./bin/sql-client.sh

4.在Flink中创建与PolarDB-X关联的订单表orders。

a.执行如下SQL语句,创建订单表orders。

CREATE TABLE orders (  order_id INT,  order_date TIMESTAMP(0),  customer_name STRING,  price DECIMAL(10, 5),  product_id INT,  order_status BOOLEAN,  PRIMARY KEY (order_id) NOT ENFORCED ) WITH ( 'connector' = 'mysql-cdc', 'hostname' = 'localhost', 'port' = '8527', 'username' = 'polardbx_root', 'password' = '123456', 'database-name' = 'mydb', 'table-name' = 'orders' );

b.执行如下SQL语句,查看订单表orders。

select * from orders;

返回结果如下,您可以查看到PolarDB-X的订单表orders的数据已经同步到Flink的订单表orders中。

c.按q键退出。

启动压测脚本并实时获取GMV

经过前面几步操作后,我们在PolarDB-X中准备好了原始订单表,在Flink中准备好了对应的订单表,并通过 PolarDB-X Global Binlog与Flink CDC MySQL Connector打通了两者之间的实时同步链路。 本步骤将指导您如何创建压测脚本,模拟双十一零点大量订单涌入的场景。

1.准备压测脚本。

a.在实验页面,单击右上角的+图标,创建新的终端二。

b.执行如下命令,创建配置文件mysql-config.cnf。

vim mysql-config.cnf

c.将如下代码添加到配置文件mysql-config.cnf中。

[client] user = "polardbx_root" password = "123456" host = 127.0.0.1 port = 8527

d.添加完成后的文件内容如下所示。按下Esc键后,输入:wq后按下Enter键保存并退出。

e.执行如下命令,创建脚本buy.sh。

vim buy.sh

f.将如下代码添加到脚本buy.sh中。

#!/bin/bash  echo "start buying..."  count=0 while : do  mysql --defaults-extra-file=./mysql-config.cnf -Dmydb -e "insert into orders values(default, now(), 'free6om', 1024, 102, 0)"  let count++  if ! (( count % 10 )); then   let "batch = count/10"   echo $batch": got 10 products, gave 1024¥"  fi  sleep 0.05 done

g.添加完成后的文件内容如下所示。按下Esc键后,输入:wq后按下Enter键保存并退出。

h.执行如下命令,为脚本buy.sh增加执行权限。

chmod +x buy.sh

2.启动Flink实时计算。

本实验场景通过Flink SQL实时呈现GMV计算结果。

切换至终端一,在Flink中执行如下SQL语句,查询GMV(gmv列)和订单数(orders列)。

select 1, sum(price) as gmv, count(order_id) as orders from orders;
返回结果如下,您可在Flink的实时计算结果中查看到实时的GMV(gmv列)和订单数(orders列)。

3.启动压测脚本。

a.切换至终端二,执行如下命令,启动压测脚本,开始创建订单。

./buy.sh

返回结果如下,您可看到压测脚本启动后,不断有订单被创建出来。

b.切换至终端一,在Flink的实时计算结果中,可查看到实时的GMV(gmv列)和订单数(orders列)。

原文链接

本文为阿里云原创内容,未经允许不得转载。

以上是关于实践教程之使用 PolarDB-X 与 Flink 搭建实时数据大屏的主要内容,如果未能解决你的问题,请参考以下文章

实践教程之如何将 PolarDB-X 与大数据等系统互通

实践教程之如何在 PolarDB-X 中优化慢 SQL

实践教程之如何在 PolarDB-X 中进行 Online DDL

实践教程之如何对 PolarDB-X 集群做动态扩缩容

猿创征文 | 国产数据库之使用PXD在Docker环境下部署PolarDB-X集群

谈谈 PolarDB-X 在读写分离场景的实践