phpjavascript使用rsa进行加密/解密
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了phpjavascript使用rsa进行加密/解密相关的知识,希望对你有一定的参考价值。
- 生成密钥:
a. 生成原始文件:openssl genrsa -out rsa_private_key.pem 1024
b. 转换格式:
openssl pkcs8 -topk8 -inform PEM -in rsa_private_key.pem -outform PEM -nocrypt -out private_key.pem
c. 生成公钥:
openssl rsa -in rsa_private_key.pem -pubout -out rsa_public_key.pem
- php:
a. 代码:<?php namespace dollarphp; /** * @desc:php rsa加密解密类 * @author [Lee] <[<[email protected]>]> */ class rsa{ private static $private_key = <<<HH -----BEGIN RSA PRIVATE KEY----- MIICXQIBAAKBgQDjcuqtaq1rq6XVPqAS9oYh16CAi/woORCyq8FKlpthj/9azU+v cXmra7VIlSjwckRoxpK/j0FjeVNf1BAj5XXctqnh5X8BZYiZxYQdfr6U20zu8bjK zHLPF4ZbzpAhXd9pYrFSawt5U3RtIw8nq5MDJIlOLupxTx9gWLRCC9gHYwIDAQAB AoGAJVi0Mf9nNFu94hLjY9m40ou+Xf0eTVh5Zm0PUvkB0HY9fqJhqDQgv0XzQVTE oR6SHwYkCHI0UWoVh5GhiNNfk6vIqlNwwI7gxi5kIhMQbF7x2ghvwGPvfxzUxY4x 3zq7QnTChpmrFudJrCliosY+FTdoAWxtRDSTm8//74k6eSkCQQD/JZjc6/r42H0j JUsy9YFVwnOrZXPYUCRDo34ottFrowUdNdmIjdf7kHkNW6bd05XiyX74MYdnFUVz Xfju2uEPAkEA5DWcRVTEiUBYy1Qg/MSwSVL7HPv9AziBSIFwKzogO9ROw+B/hHUx 845S7r0WKGO7D56IJNcELIKpW3t0vU6MbQJAMeAcmJr8jWZsV9FzeLurE6OWTtvf IFrSK/Kqt7S9DUhpuIMNSfdIUCG2uBjBbr1soE95JXUxHcJ3uAyXm8FnmwJBANFl N5yOKT/e4RrAePw15aOCFpQDy6Z25HmI+0lOrmD3b8ZfaeI6PrlCMGqK6Zfp2qx8 RGO5P0UwJwGgB//j4QkCQQDe8Ogu3JJ256Z4NDy/GC3VSZqKxnApTJICScYFt3hQ M5/d8kDpkvcugI0ADjjBYs0FpnSiYsyq85GCAFQZsym4 -----END RSA PRIVATE KEY----- HH; private static $public_key = <<<HH -----BEGIN PUBLIC KEY----- MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDjcuqtaq1rq6XVPqAS9oYh16CA i/woORCyq8FKlpthj/9azU+vcXmra7VIlSjwckRoxpK/j0FjeVNf1BAj5XXctqnh 5X8BZYiZxYQdfr6U20zu8bjKzHLPF4ZbzpAhXd9pYrFSawt5U3RtIw8nq5MDJIlO LupxTx9gWLRCC9gHYwIDAQAB -----END PUBLIC KEY----- HH; /** * 获取私钥 * @return bool|resource */ private static function getPrivateKey(){ $privKey = self::$private_key; return openssl_pkey_get_private($privKey); } /** * 获取公钥 * @return bool|resource */ private static function getPublicKey(){ $publicKey = self::$public_key; return openssl_pkey_get_public($publicKey); } /** * 私钥加密 * @param string $data * @return null|string */ public static function privEncrypt($data = ‘‘){ if (!is_string($data)) { return null; } return openssl_private_encrypt($data,$encrypted,self::getPrivateKey()) ? base64_encode($encrypted) : null; } /** * 公钥加密 * @param string $data * @return null|string */ public static function publicEncrypt($data = ‘‘){ if (!is_string($data)) { return null; } return openssl_public_encrypt($data,$encrypted,self::getPublicKey()) ? base64_encode($encrypted) : null; } /** * 私钥解密 * @param string $encrypted * @return null */ public static function privDecrypt($encrypted = ‘‘){ if (!is_string($encrypted)) { return null; } return (openssl_private_decrypt(base64_decode($encrypted), $decrypted, self::getPrivateKey())) ? $decrypted : null; } /** * 公钥解密 * @param string $encrypted * @return null */ public static function publicDecrypt($encrypted = ‘‘){ if (!is_string($encrypted)) { return null; } return (openssl_public_decrypt(base64_decode($encrypted), $decrypted, self::getPublicKey())) ? $decrypted : null; } }
b. 测试:
$rsa = new rsa(); $str = ‘hello world‘; // 私钥加密 $privEncrypt = $rsa->privEncrypt($str); echo $privEncrypt.PHP_EOL.PHP_EOL; // 公钥解密 $publicDecrypt = $rsa->publicDecrypt($privEncrypt); echo $publicDecrypt.PHP_EOL.PHP_EOL; // 公钥加密 $publicEncrypt = $rsa->publicEncrypt($str); echo $publicEncrypt.PHP_EOL.PHP_EOL; // 私钥解密 $privDecrypt = $rsa->privDecrypt($publicEncrypt); echo $privDecrypt.PHP_EOL.PHP_EOL;
c. 输出:
wGk8Cyb0eDwjiqRGqoBkVlpNWFAeD8zxqDTrOjpBSyIdqKL3ZyoluiNOzzWmOnqWtHwtGfpKQuUuoeI1ANqsuKct/w1O9/IyiDwrDIkfXijGTz8ofj4eZHBnIlIY1gT9AaDXzR61rRQu0+K3aG4PA+Z2zxhf5mAuN7LbHQlQU5A= hello world kBYs+bPMLaDbyLultt5UoBhcbJh37exGFvoyr42MfU7/428XFYfOdCeFJDqt16iCByrL+YOe2GgOVuCkxmMD2thOKYjWAkfZI+gnfVu8w2nQoXAFSfejwFvhnIMBd/IFTJoQs7jJG5ELEwCYVjDI10nzXOtYPlDa+szzambMuMs= hello world [Finished in 0.7s]
- javascript:
a. 代码:
rsa.js/* @desc:rsa加密/解密类 @author lee <[email protected]> */ function rsa() { var obj = {} ‘use strict‘; var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; function int2char(n) { return BI_RM.charAt(n); } //#region BIT_OPERATIONS // (public) this & a function op_and(x, y) { return x & y; } // (public) this | a function op_or(x, y) { return x | y; } // (public) this ^ a function op_xor(x, y) { return x ^ y; } // (public) this & ~a function op_andnot(x, y) { return x & ~y; } // return index of lowest 1-bit in x, x < 2^31 function lbit(x) { if (x == 0) { return -1; } var r = 0; if ((x & 0xffff) == 0) { x >>= 16; r += 16; } if ((x & 0xff) == 0) { x >>= 8; r += 8; } if ((x & 0xf) == 0) { x >>= 4; r += 4; } if ((x & 3) == 0) { x >>= 2; r += 2; } if ((x & 1) == 0) { ++r; } return r; } // return number of 1 bits in x function cbit(x) { var r = 0; while (x != 0) { x &= x - 1; ++r; } return r; } //#endregion BIT_OPERATIONS var b64map = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; var b64pad = "="; function hex2b64(h) { var i; var c; var ret = ""; for (i = 0; i + 3 <= h.length; i += 3) { c = parseInt(h.substring(i, i + 3), 16); ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63); } if (i + 1 == h.length) { c = parseInt(h.substring(i, i + 1), 16); ret += b64map.charAt(c << 2); } else if (i + 2 == h.length) { c = parseInt(h.substring(i, i + 2), 16); ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4); } while ((ret.length & 3) > 0) { ret += b64pad; } return ret; } // convert a base64 string to hex function b64tohex(s) { var ret = ""; var i; var k = 0; // b64 state, 0-3 var slop = 0; for (i = 0; i < s.length; ++i) { if (s.charAt(i) == b64pad) { break; } var v = b64map.indexOf(s.charAt(i)); if (v < 0) { continue; } if (k == 0) { ret += int2char(v >> 2); slop = v & 3; k = 1; } else if (k == 1) { ret += int2char((slop << 2) | (v >> 4)); slop = v & 0xf; k = 2; } else if (k == 2) { ret += int2char(slop); ret += int2char(v >> 2); slop = v & 3; k = 3; } else { ret += int2char((slop << 2) | (v >> 4)); ret += int2char(v & 0xf); k = 0; } } if (k == 1) { ret += int2char(slop << 2); } return ret; } /*! ***************************************************************************** Copyright (c) Microsoft Corporation. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 THIS CODE IS PROVIDED ON AN *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABLITY OR NON-INFRINGEMENT. See the Apache Version 2.0 License for specific language governing permissions and limitations under the License. ***************************************************************************** */ /* global Reflect, Promise */ var extendStatics = function(d, b) { extendStatics = Object.setPrototypeOf || ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) || function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; }; return extendStatics(d, b); }; function __extends(d, b) { extendStatics(d, b); function __() { this.constructor = d; } d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __()); } // Hex JavaScript decoder // Copyright (c) 2008-2013 Lapo Luchini <[email protected]> // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. /*jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */ var decoder; var Hex = { decode: function (a) { var i; if (decoder === undefined) { var hex = "0123456789ABCDEF"; var ignore = " f u00A0u2028u2029"; decoder = {}; for (i = 0; i < 16; ++i) { decoder[hex.charAt(i)] = i; } hex = hex.toLowerCase(); for (i = 10; i < 16; ++i) { decoder[hex.charAt(i)] = i; } for (i = 0; i < ignore.length; ++i) { decoder[ignore.charAt(i)] = -1; } } var out = []; var bits = 0; var char_count = 0; for (i = 0; i < a.length; ++i) { var c = a.charAt(i); if (c == "=") { break; } c = decoder[c]; if (c == -1) { continue; } if (c === undefined) { throw new Error("Illegal character at offset " + i); } bits |= c; if (++char_count >= 2) { out[out.length] = bits; bits = 0; char_count = 0; } else { bits <<= 4; } } if (char_count) { throw new Error("Hex encoding incomplete: 4 bits missing"); } return out; } }; // Base64 JavaScript decoder // Copyright (c) 2008-2013 Lapo Luchini <[email protected]> // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. /*jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */ var decoder$1; var Base64 = { decode: function (a) { var i; if (decoder$1 === undefined) { var b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; var ignore = "= f u00A0u2028u2029"; decoder$1 = Object.create(null); for (i = 0; i < 64; ++i) { decoder$1[b64.charAt(i)] = i; } for (i = 0; i < ignore.length; ++i) { decoder$1[ignore.charAt(i)] = -1; } } var out = []; var bits = 0; var char_count = 0; for (i = 0; i < a.length; ++i) { var c = a.charAt(i); if (c == "=") { break; } c = decoder$1[c]; if (c == -1) { continue; } if (c === undefined) { throw new Error("Illegal character at offset " + i); } bits |= c; if (++char_count >= 4) { out[out.length] = (bits >> 16); out[out.length] = (bits >> 8) & 0xFF; out[out.length] = bits & 0xFF; bits = 0; char_count = 0; } else { bits <<= 6; } } switch (char_count) { case 1: throw new Error("Base64 encoding incomplete: at least 2 bits missing"); case 2: out[out.length] = (bits >> 10); break; case 3: out[out.length] = (bits >> 16); out[out.length] = (bits >> 8) & 0xFF; break; } return out; }, re: /-----BEGIN [^-]+-----([A-Za-z0-9+/=s]+)-----END [^-]+-----|begin-base64[^ ]+ ([A-Za-z0-9+/=s]+)====/, unarmor: function (a) { var m = Base64.re.exec(a); if (m) { if (m[1]) { a = m[1]; } else if (m[2]) { a = m[2]; } else { throw new Error("RegExp out of sync"); } } return Base64.decode(a); } }; // Big integer base-10 printing library // Copyright (c) 2014 Lapo Luchini <[email protected]> // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. /*jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */ var max = 10000000000000; // biggest integer that can still fit 2^53 when multiplied by 256 var Int10 = /** @class */ (function () { function Int10(value) { this.buf = [+value || 0]; } Int10.prototype.mulAdd = function (m, c) { // assert(m <= 256) var b = this.buf; var l = b.length; var i; var t; for (i = 0; i < l; ++i) { t = b[i] * m + c; if (t < max) { c = 0; } else { c = 0 | (t / max); t -= c * max; } b[i] = t; } if (c > 0) { b[i] = c; } }; Int10.prototype.sub = function (c) { // assert(m <= 256) var b = this.buf; var l = b.length; var i; var t; for (i = 0; i < l; ++i) { t = b[i] - c; if (t < 0) { t += max; c = 1; } else { c = 0; } b[i] = t; } while (b[b.length - 1] === 0) { b.pop(); } }; Int10.prototype.toString = function (base) { if ((base || 10) != 10) { throw new Error("only base 10 is supported"); } var b = this.buf; var s = b[b.length - 1].toString(); for (var i = b.length - 2; i >= 0; --i) { s += (max + b[i]).toString().substring(1); } return s; }; Int10.prototype.valueOf = function () { var b = this.buf; var v = 0; for (var i = b.length - 1; i >= 0; --i) { v = v * max + b[i]; } return v; }; Int10.prototype.simplify = function () { var b = this.buf; return (b.length == 1) ? b[0] : this; }; return Int10; }()); // ASN.1 JavaScript decoder var ellipsis = "u2026"; var reTimeS = /^(dd)(0[1-9]|1[0-2])(0[1-9]|[12]d|3[01])([01]d|2[0-3])(?:([0-5]d)(?:([0-5]d)(?:[.,](d{1,3}))?)?)?(Z|[-+](?:[0]d|1[0-2])([0-5]d)?)?$/; var reTimeL = /^(dddd)(0[1-9]|1[0-2])(0[1-9]|[12]d|3[01])([01]d|2[0-3])(?:([0-5]d)(?:([0-5]d)(?:[.,](d{1,3}))?)?)?(Z|[-+](?:[0]d|1[0-2])([0-5]d)?)?$/; function stringCut(str, len) { if (str.length > len) { str = str.substring(0, len) + ellipsis; } return str; } var Stream = /** @class */ (function () { function Stream(enc, pos) { this.hexDigits = "0123456789ABCDEF"; if (enc instanceof Stream) { this.enc = enc.enc; this.pos = enc.pos; } else { // enc should be an array or a binary string this.enc = enc; this.pos = pos; } } Stream.prototype.get = function (pos) { if (pos === undefined) { pos = this.pos++; } if (pos >= this.enc.length) { throw new Error("Requesting byte offset " + pos + " on a stream of length " + this.enc.length); } return ("string" === typeof this.enc) ? this.enc.charCodeAt(pos) : this.enc[pos]; }; Stream.prototype.hexByte = function (b) { return this.hexDigits.charAt((b >> 4) & 0xF) + this.hexDigits.charAt(b & 0xF); }; Stream.prototype.hexDump = function (start, end, raw) { var s = ""; for (var i = start; i < end; ++i) { s += this.hexByte(this.get(i)); if (raw !== true) { switch (i & 0xF) { case 0x7: s += " "; break; case 0xF: s += " "; break; default: s += " "; } } } return s; }; Stream.prototype.isASCII = function (start, end) { for (var i = start; i < end; ++i) { var c = this.get(i); if (c < 32 || c > 176) { return false; } } return true; }; Stream.prototype.parseStringISO = function (start, end) { var s = ""; for (var i = start; i < end; ++i) { s += String.fromCharCode(this.get(i)); } return s; }; Stream.prototype.parseStringUTF = function (start, end) { var s = ""; for (var i = start; i < end;) { var c = this.get(i++); if (c < 128) { s += String.fromCharCode(c); } else if ((c > 191) && (c < 224)) { s += String.fromCharCode(((c & 0x1F) << 6) | (this.get(i++) & 0x3F)); } else { s += String.fromCharCode(((c & 0x0F) << 12) | ((this.get(i++) & 0x3F) << 6) | (this.get(i++) & 0x3F)); } } return s; }; Stream.prototype.parseStringBMP = function (start, end) { var str = ""; var hi; var lo; for (var i = start; i < end;) { hi = this.get(i++); lo = this.get(i++); str += String.fromCharCode((hi << 8) | lo); } return str; }; Stream.prototype.parseTime = function (start, end, shortYear) { var s = this.parseStringISO(start, end); var m = (shortYear ? reTimeS : reTimeL).exec(s); if (!m) { return "Unrecognized time: " + s; } if (shortYear) { // to avoid querying the timer, use the fixed range [1970, 2069] // it will conform with ITU X.400 [-10, +40] sliding window until 2030 m[1] = +m[1]; m[1] += (+m[1] < 70) ? 2000 : 1900; } s = m[1] + "-" + m[2] + "-" + m[3] + " " + m[4]; if (m[5]) { s += ":" + m[5]; if (m[6]) { s += ":" + m[6]; if (m[7]) { s += "." + m[7]; } } } if (m[8]) { s += " UTC"; if (m[8] != "Z") { s += m[8]; if (m[9]) { s += ":" + m[9]; } } } return s; }; Stream.prototype.parseInteger = function (start, end) { var v = this.get(start); var neg = (v > 127); var pad = neg ? 255 : 0; var len; var s = ""; // skip unuseful bits (not allowed in DER) while (v == pad && ++start < end) { v = this.get(start); } len = end - start; if (len === 0) { return neg ? -1 : 0; } // show bit length of huge integers if (len > 4) { s = v; len <<= 3; while (((+s ^ pad) & 0x80) == 0) { s = +s << 1; --len; } s = "(" + len + " bit) "; } // decode the integer if (neg) { v = v - 256; } var n = new Int10(v); for (var i = start + 1; i < end; ++i) { n.mulAdd(256, this.get(i)); } return s + n.toString(); }; Stream.prototype.parseBitString = function (start, end, maxLength) { var unusedBit = this.get(start); var lenBit = ((end - start - 1) << 3) - unusedBit; var intro = "(" + lenBit + " bit) "; var s = ""; for (var i = start + 1; i < end; ++i) { var b = this.get(i); var skip = (i == end - 1) ? unusedBit : 0; for (var j = 7; j >= skip; --j) { s += (b >> j) & 1 ? "1" : "0"; } if (s.length > maxLength) { return intro + stringCut(s, maxLength); } } return intro + s; }; Stream.prototype.parseOctetString = function (start, end, maxLength) { if (this.isASCII(start, end)) { return stringCut(this.parseStringISO(start, end), maxLength); } var len = end - start; var s = "(" + len + " byte) "; maxLength /= 2; // we work in bytes if (len > maxLength) { end = start + maxLength; } for (var i = start; i < end; ++i) { s += this.hexByte(this.get(i)); } if (len > maxLength) { s += ellipsis; } return s; }; Stream.prototype.parseOID = function (start, end, maxLength) { var s = ""; var n = new Int10(); var bits = 0; for (var i = start; i < end; ++i) { var v = this.get(i); n.mulAdd(128, v & 0x7F); bits += 7; if (!(v & 0x80)) { // finished if (s === "") { n = n.simplify(); if (n instanceof Int10) { n.sub(80); s = "2." + n.toString(); } else { var m = n < 80 ? n < 40 ? 0 : 1 : 2; s = m + "." + (n - m * 40); } } else { s += "." + n.toString(); } if (s.length > maxLength) { return stringCut(s, maxLength); } n = new Int10(); bits = 0; } } if (bits > 0) { s += ".incomplete"; } return s; }; return Stream; }()); var ASN1 = /** @class */ (function () { function ASN1(stream, header, length, tag, sub) { if (!(tag instanceof ASN1Tag)) { throw new Error("Invalid tag value."); } this.stream = stream; this.header = header; this.length = length; this.tag = tag; this.sub = sub; } ASN1.prototype.typeName = function () { switch (this.tag.tagClass) { case 0: // universal switch (this.tag.tagNumber) { case 0x00: return "EOC"; case 0x01: return "BOOLEAN"; case 0x02: return "INTEGER"; case 0x03: return "BIT_STRING"; case 0x04: return "OCTET_STRING"; case 0x05: return "NULL"; case 0x06: return "OBJECT_IDENTIFIER"; case 0x07: return "ObjectDescriptor"; case 0x08: return "EXTERNAL"; case 0x09: return "REAL"; case 0x0A: return "ENUMERATED"; case 0x0B: return "EMBEDDED_PDV"; case 0x0C: return "UTF8String"; case 0x10: return "SEQUENCE"; case 0x11: return "SET"; case 0x12: return "NumericString"; case 0x13: return "PrintableString"; // ASCII subset case 0x14: return "TeletexString"; // aka T61String case 0x15: return "VideotexString"; case 0x16: return "IA5String"; // ASCII case 0x17: return "UTCTime"; case 0x18: return "GeneralizedTime"; case 0x19: return "GraphicString"; case 0x1A: return "VisibleString"; // ASCII subset case 0x1B: return "GeneralString"; case 0x1C: return "UniversalString"; case 0x1E: return "BMPString"; } return "Universal_" + this.tag.tagNumber.toString(); case 1: return "Application_" + this.tag.tagNumber.toString(); case 2: return "[" + this.tag.tagNumber.toString() + "]"; // Context case 3: return "Private_" + this.tag.tagNumber.toString(); } }; ASN1.prototype.content = function (maxLength) { if (this.tag === undefined) { return null; } if (maxLength === undefined) { maxLength = Infinity; } var content = this.posContent(); var len = Math.abs(this.length); if (!this.tag.isUniversal()) { if (this.sub !== null) { return "(" + this.sub.length + " elem)"; } return this.stream.parseOctetString(content, content + len, maxLength); } switch (this.tag.tagNumber) { case 0x01: // BOOLEAN return (this.stream.get(content) === 0) ? "false" : "true"; case 0x02: // INTEGER return this.stream.parseInteger(content, content + len); case 0x03: // BIT_STRING return this.sub ? "(" + this.sub.length + " elem)" : this.stream.parseBitString(content, content + len, maxLength); case 0x04: // OCTET_STRING return this.sub ? "(" + this.sub.length + " elem)" : this.stream.parseOctetString(content, content + len, maxLength); // case 0x05: // NULL case 0x06: // OBJECT_IDENTIFIER return this.stream.parseOID(content, content + len, maxLength); // case 0x07: // ObjectDescriptor // case 0x08: // EXTERNAL // case 0x09: // REAL // case 0x0A: // ENUMERATED // case 0x0B: // EMBEDDED_PDV case 0x10: // SEQUENCE case 0x11: // SET if (this.sub !== null) { return "(" + this.sub.length + " elem)"; } else { return "(no elem)"; } case 0x0C: // UTF8String return stringCut(this.stream.parseStringUTF(content, content + len), maxLength); case 0x12: // NumericString case 0x13: // PrintableString case 0x14: // TeletexString case 0x15: // VideotexString case 0x16: // IA5String // case 0x19: // GraphicString case 0x1A: // VisibleString // case 0x1B: // GeneralString // case 0x1C: // UniversalString return stringCut(this.stream.parseStringISO(content, content + len), maxLength); case 0x1E: // BMPString return stringCut(this.stream.parseStringBMP(content, content + len), maxLength); case 0x17: // UTCTime case 0x18: // GeneralizedTime return this.stream.parseTime(content, content + len, (this.tag.tagNumber == 0x17)); } return null; }; ASN1.prototype.toString = function () { return this.typeName() + "@" + this.stream.pos + "[header:" + this.header + ",length:" + this.length + ",sub:" + ((this.sub === null) ? "null" : this.sub.length) + "]"; }; ASN1.prototype.toPrettyString = function (indent) { if (indent === undefined) { indent = ""; } var s = indent + this.typeName() + " @" + this.stream.pos; if (this.length >= 0) { s += "+"; } s += this.length; if (this.tag.tagConstructed) { s += " (constructed)"; } else if ((this.tag.isUniversal() && ((this.tag.tagNumber == 0x03) || (this.tag.tagNumber == 0x04))) && (this.sub !== null)) { s += " (encapsulates)"; } s += " "; if (this.sub !== null) { indent += " "; for (var i = 0, max = this.sub.length; i < max; ++i) { s += this.sub[i].toPrettyString(indent); } } return s; }; ASN1.prototype.posStart = function () { return this.stream.pos; }; ASN1.prototype.posContent = function () { return this.stream.pos + this.header; }; ASN1.prototype.posEnd = function () { return this.stream.pos + this.header + Math.abs(this.length); }; ASN1.prototype.toHexString = function () { return this.stream.hexDump(this.posStart(), this.posEnd(), true); }; ASN1.decodeLength = function (stream) { var buf = stream.get(); var len = buf & 0x7F; if (len == buf) { return len; } // no reason to use Int10, as it would be a huge buffer anyways if (len > 6) { throw new Error("Length over 48 bits not supported at position " + (stream.pos - 1)); } if (len === 0) { return null; } // undefined buf = 0; for (var i = 0; i < len; ++i) { buf = (buf * 256) + stream.get(); } return buf; }; /** * Retrieve the hexadecimal value (as a string) of the current ASN.1 element * @returns {string} * @public */ ASN1.prototype.getHexStringValue = function () { var hexString = this.toHexString(); var offset = this.header * 2; var length = this.length * 2; return hexString.substr(offset, length); }; ASN1.decode = function (str) { var stream; if (!(str instanceof Stream)) { stream = new Stream(str, 0); } else { stream = str; } var streamStart = new Stream(stream); var tag = new ASN1Tag(stream); var len = ASN1.decodeLength(stream); var start = stream.pos; var header = start - streamStart.pos; var sub = null; var getSub = function () { var ret = []; if (len !== null) { // definite length var end = start + len; while (stream.pos < end) { ret[ret.length] = ASN1.decode(stream); } if (stream.pos != end) { throw new Error("Content size is not correct for container starting at offset " + start); } } else { // undefined length try { for (;;) { var s = ASN1.decode(stream); if (s.tag.isEOC()) { break; } ret[ret.length] = s; } len = start - stream.pos; // undefined lengths are represented as negative values } catch (e) { throw new Error("Exception while decoding undefined length content: " + e); } } return ret; }; if (tag.tagConstructed) { // must have valid content sub = getSub(); } else if (tag.isUniversal() && ((tag.tagNumber == 0x03) || (tag.tagNumber == 0x04))) { // sometimes BitString and OctetString are used to encapsulate ASN.1 try { if (tag.tagNumber == 0x03) { if (stream.get() != 0) { throw new Error("BIT STRINGs with unused bits cannot encapsulate."); } } sub = getSub(); for (var i = 0; i < sub.length; ++i) { if (sub[i].tag.isEOC()) { throw new Error("EOC is not supposed to be actual content."); } } } catch (e) { // but silently ignore when they don‘t sub = null; } } if (sub === null) { if (len === null) { throw new Error("We can‘t skip over an invalid tag with undefined length at offset " + start); } stream.pos = start + Math.abs(len); } return new ASN1(streamStart, header, len, tag, sub); }; return ASN1; }()); var ASN1Tag = /** @class */ (function () { function ASN1Tag(stream) { var buf = stream.get(); this.tagClass = buf >> 6; this.tagConstructed = ((buf & 0x20) !== 0); this.tagNumber = buf & 0x1F; if (this.tagNumber == 0x1F) { // long tag var n = new Int10(); do { buf = stream.get(); n.mulAdd(128, buf & 0x7F); } while (buf & 0x80); this.tagNumber = n.simplify(); } } ASN1Tag.prototype.isUniversal = function () { return this.tagClass === 0x00; }; ASN1Tag.prototype.isEOC = function () { return this.tagClass === 0x00 && this.tagNumber === 0x00; }; return ASN1Tag; }()); // Copyright (c) 2005 Tom Wu // Bits per digit var dbits; // JavaScript engine analysis var canary = 0xdeadbeefcafe; var j_lm = ((canary & 0xffffff) == 0xefcafe); //#region var lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]; var lplim = (1 << 26) / lowprimes[lowprimes.length - 1]; //#endregion // (public) Constructor var BigInteger = /** @class */ (function () { function BigInteger(a, b, c) { if (a != null) { if ("number" == typeof a) { this.fromNumber(a, b, c); } else if (b == null && "string" != typeof a) { this.fromString(a, 256); } else { this.fromString(a, b); } } } //#region PUBLIC // BigInteger.prototype.toString = bnToString; // (public) return string representation in given radix BigInteger.prototype.toString = function (b) { if (this.s < 0) { return "-" + this.negate().toString(b); } var k; if (b == 16) { k = 4; } else if (b == 8) { k = 3; } else if (b == 2) { k = 1; } else if (b == 32) { k = 5; } else if (b == 4) { k = 2; } else { return this.toRadix(b); } var km = (1 << k) - 1; var d; var m = false; var r = ""; var i = this.t; var p = this.DB - (i * this.DB) % k; if (i-- > 0) { if (p < this.DB && (d = this[i] >> p) > 0) { m = true; r = int2char(d); } while (i >= 0) { if (p < k) { d = (this[i] & ((1 << p) - 1)) << (k - p); d |= this[--i] >> (p += this.DB - k); } else { d = (this[i] >> (p -= k)) & km; if (p <= 0) { p += this.DB; --i; } } if (d > 0) { m = true; } if (m) { r += int2char(d); } } } return m ? r : "0"; }; // BigInteger.prototype.negate = bnNegate; // (public) -this BigInteger.prototype.negate = function () { var r = nbi(); BigInteger.ZERO.subTo(this, r); return r; }; // BigInteger.prototype.abs = bnAbs; // (public) |this| BigInteger.prototype.abs = function () { return (this.s < 0) ? this.negate() : this; }; // BigInteger.prototype.compareTo = bnCompareTo; // (public) return + if this > a, - if this < a, 0 if equal BigInteger.prototype.compareTo = function (a) { var r = this.s - a.s; if (r != 0) { return r; } var i = this.t; r = i - a.t; if (r != 0) { return (this.s < 0) ? -r : r; } while (--i >= 0) { if ((r = this[i] - a[i]) != 0) { return r; } } return 0; }; // BigInteger.prototype.bitLength = bnBitLength; // (public) return the number of bits in "this" BigInteger.prototype.bitLength = function () { if (this.t <= 0) { return 0; } return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM)); }; // BigInteger.prototype.mod = bnMod; // (public) this mod a BigInteger.prototype.mod = function (a) { var r = nbi(); this.abs().divRemTo(a, null, r); if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) { a.subTo(r, r); } return r; }; // BigInteger.prototype.modPowInt = bnModPowInt; // (public) this^e % m, 0 <= e < 2^32 BigInteger.prototype.modPowInt = function (e, m) { var z; if (e < 256 || m.isEven()) { z = new Classic(m); } else { z = new Montgomery(m); } return this.exp(e, z); }; // BigInteger.prototype.clone = bnClone; // (public) BigInteger.prototype.clone = function () { var r = nbi(); this.copyTo(r); return r; }; // BigInteger.prototype.intValue = bnIntValue; // (public) return value as integer BigInteger.prototype.intValue = function () { if (this.s < 0) { if (this.t == 1) { return this[0] - this.DV; } else if (this.t == 0) { return -1; } } else if (this.t == 1) { return this[0]; } else if (this.t == 0) { return 0; } // assumes 16 < DB < 32 return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0]; }; // BigInteger.prototype.byteValue = bnByteValue; // (public) return value as byte BigInteger.prototype.byteValue = function () { return (this.t == 0) ? this.s : (this[0] << 24) >> 24; }; // BigInteger.prototype.shortValue = bnShortValue; // (public) return value as short (assumes DB>=16) BigInteger.prototype.shortValue = function () { return (this.t == 0) ? this.s : (this[0] << 16) >> 16; }; // BigInteger.prototype.signum = bnSigNum; // (public) 0 if this == 0, 1 if this > 0 BigInteger.prototype.signum = function () { if (this.s < 0) { return -1; } else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) { return 0; } else { return 1; } }; // BigInteger.prototype.toByteArray = bnToByteArray; // (public) convert to bigendian byte array BigInteger.prototype.toByteArray = function () { var i = this.t; var r = []; r[0] = this.s; var p = this.DB - (i * this.DB) % 8; var d; var k = 0; if (i-- > 0) { if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p) { r[k++] = d | (this.s << (this.DB - p)); } while (i >= 0) { if (p < 8) { d = (this[i] & ((1 << p) - 1)) << (8 - p); d |= this[--i] >> (p += this.DB - 8); } else { d = (this[i] >> (p -= 8)) & 0xff; if (p <= 0) { p += this.DB; --i; } } if ((d & 0x80) != 0) { d |= -256; } if (k == 0 && (this.s & 0x80) != (d & 0x80)) { ++k; } if (k > 0 || d != this.s) { r[k++] = d; } } } return r; }; // BigInteger.prototype.equals = bnEquals; BigInteger.prototype.equals = function (a) { return (this.compareTo(a) == 0); }; // BigInteger.prototype.min = bnMin; BigInteger.prototype.min = function (a) { return (this.compareTo(a) < 0) ? this : a; }; // BigInteger.prototype.max = bnMax; BigInteger.prototype.max = function (a) { return (this.compareTo(a) > 0) ? this : a; }; // BigInteger.prototype.and = bnAnd; BigInteger.prototype.and = function (a) { var r = nbi(); this.bitwiseTo(a, op_and, r); return r; }; // BigInteger.prototype.or = bnOr; BigInteger.prototype.or = function (a) { var r = nbi(); this.bitwiseTo(a, op_or, r); return r; }; // BigInteger.prototype.xor = bnXor; BigInteger.prototype.xor = function (a) { var r = nbi(); this.bitwiseTo(a, op_xor, r); return r; }; // BigInteger.prototype.andNot = bnAndNot; BigInteger.prototype.andNot = function (a) { var r = nbi(); this.bitwiseTo(a, op_andnot, r); return r; }; // BigInteger.prototype.not = bnNot; // (public) ~this BigInteger.prototype.not = function () { var r = nbi(); for (var i = 0; i < this.t; ++i) { r[i] = this.DM & ~this[i]; } r.t = this.t; r.s = ~this.s; return r; }; // BigInteger.prototype.shiftLeft = bnShiftLeft; // (public) this << n BigInteger.prototype.shiftLeft = function (n) { var r = nbi(); if (n < 0) { this.rShiftTo(-n, r); } else { this.lShiftTo(n, r); } return r; }; // BigInteger.prototype.shiftRight = bnShiftRight; // (public) this >> n BigInteger.prototype.shiftRight = function (n) { var r = nbi(); if (n < 0) { this.lShiftTo(-n, r); } else { this.rShiftTo(n, r); } return r; }; // BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; // (public) returns index of lowest 1-bit (or -1 if none) BigInteger.prototype.getLowestSetBit = function () { for (var i = 0; i < this.t; ++i) { if (this[i] != 0) { return i * this.DB + lbit(this[i]); } } if (this.s < 0) { return this.t * this.DB; } return -1; }; // BigInteger.prototype.bitCount = bnBitCount; // (public) return number of set bits BigInteger.prototype.bitCount = function () { var r = 0; var x = this.s & this.DM; for (var i = 0; i < this.t; ++i) { r += cbit(this[i] ^ x); } return r; }; // BigInteger.prototype.testBit = bnTestBit; // (public) true iff nth bit is set BigInteger.prototype.testBit = function (n) { var j = Math.floor(n / this.DB); if (j >= this.t) { return (this.s != 0); } return ((this[j] & (1 << (n % this.DB))) != 0); }; // BigInteger.prototype.setBit = bnSetBit; // (public) this | (1<<n) BigInteger.prototype.setBit = function (n) { return this.changeBit(n, op_or); }; // BigInteger.prototype.clearBit = bnClearBit; // (public) this & ~(1<<n) BigInteger.prototype.clearBit = function (n) { return this.changeBit(n, op_andnot); }; // BigInteger.prototype.flipBit = bnFlipBit; // (public) this ^ (1<<n) BigInteger.prototype.flipBit = function (n) { return this.changeBit(n, op_xor); }; // BigInteger.prototype.add = bnAdd; // (public) this + a BigInteger.prototype.add = function (a) { var r = nbi(); this.addTo(a, r); return r; }; // BigInteger.prototype.subtract = bnSubtract; // (public) this - a BigInteger.prototype.subtract = function (a) { var r = nbi(); this.subTo(a, r); return r; }; // BigInteger.prototype.multiply = bnMultiply; // (public) this * a BigInteger.prototype.multiply = function (a) { var r = nbi(); this.multiplyTo(a, r); return r; }; // BigInteger.prototype.divide = bnDivide; // (public) this / a BigInteger.prototype.divide = function (a) { var r = nbi(); this.divRemTo(a, r, null); return r; }; // BigInteger.prototype.remainder = bnRemainder; // (public) this % a BigInteger.prototype.remainder = function (a) { var r = nbi(); this.divRemTo(a, null, r); return r; }; // BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; // (public) [this/a,this%a] BigInteger.prototype.divideAndRemainder = function (a) { var q = nbi(); var r = nbi(); this.divRemTo(a, q, r); return [q, r]; }; // BigInteger.prototype.modPow = bnModPow; // (public) this^e % m (HAC 14.85) BigInteger.prototype.modPow = function (e, m) { var i = e.bitLength(); var k; var r = nbv(1); var z; if (i <= 0) { return r; } else if (i < 18) { k = 1; } else if (i < 48) { k = 3; } else if (i < 144) { k = 4; } else if (i < 768) { k = 5; } else { k = 6; } if (i < 8) { z = new Classic(m); } else if (m.isEven()) { z = new Barrett(m); } else { z = new Montgomery(m); } // precomputation var g = []; var n = 3; var k1 = k - 1; var km = (1 << k) - 1; g[1] = z.convert(this); if (k > 1) { var g2 = nbi(); z.sqrTo(g[1], g2); while (n <= km) { g[n] = nbi(); z.mulTo(g2, g[n - 2], g[n]); n += 2; } } var j = e.t - 1; var w; var is1 = true; var r2 = nbi(); var t; i = nbits(e[j]) - 1; while (j >= 0) { if (i >= k1) { w = (e[j] >> (i - k1)) & km; } else { w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i); if (j > 0) { w |= e[j - 1] >> (this.DB + i - k1); } } n = k; while ((w & 1) == 0) { w >>= 1; --n; } if ((i -= n) < 0) { i += this.DB; --j; } if (is1) { // ret == 1, don‘t bother squaring or multiplying it g[w].copyTo(r); is1 = false; } else { while (n > 1) { z.sqrTo(r, r2); z.sqrTo(r2, r); n -= 2; } if (n > 0) { z.sqrTo(r, r2); } else { t = r; r = r2; r2 = t; } z.mulTo(r2, g[w], r); } while (j >= 0 && (e[j] & (1 << i)) == 0) { z.sqrTo(r, r2); t = r; r = r2; r2 = t; if (--i < 0) { i = this.DB - 1; --j; } } } return z.revert(r); }; // BigInteger.prototype.modInverse = bnModInverse; // (public) 1/this % m (HAC 14.61) BigInteger.prototype.modInverse = function (m) { var ac = m.isEven(); if ((this.isEven() && ac) || m.signum() == 0) { return BigInteger.ZERO; } var u = m.clone(); var v = this.clone(); var a = nbv(1); var b = nbv(0); var c = nbv(0); var d = nbv(1); while (u.signum() != 0) { while (u.isEven()) { u.rShiftTo(1, u); if (ac) { if (!a.isEven() || !b.isEven()) { a.addTo(this, a); b.subTo(m, b); } a.rShiftTo(1, a); } else if (!b.isEven()) { b.subTo(m, b); } b.rShiftTo(1, b); } while (v.isEven()) { v.rShiftTo(1, v); if (ac) { if (!c.isEven() || !d.isEven()) { c.addTo(this, c); d.subTo(m, d); } c.rShiftTo(1, c); } else if (!d.isEven()) { d.subTo(m, d); } d.rShiftTo(1, d); } if (u.compareTo(v) >= 0) { u.subTo(v, u); if (ac) { a.subTo(c, a); } b.subTo(d, b); } else { v.subTo(u, v); if (ac) { c.subTo(a, c); } d.subTo(b, d); } } if (v.compareTo(BigInteger.ONE) != 0) { return BigInteger.ZERO; } if (d.compareTo(m) >= 0) { return d.subtract(m); } if (d.signum() < 0) { d.addTo(m, d); } else { return d; } if (d.signum() < 0) { return d.add(m); } else { return d; } }; // BigInteger.prototype.pow = bnPow; // (public) this^e BigInteger.prototype.pow = function (e) { return this.exp(e, new NullExp()); }; // BigInteger.prototype.gcd = bnGCD; // (public) gcd(this,a) (HAC 14.54) BigInteger.prototype.gcd = function (a) { var x = (this.s < 0) ? this.negate() : this.clone(); var y = (a.s < 0) ? a.negate() : a.clone(); if (x.compareTo(y) < 0) { var t = x; x = y; y = t; } var i = x.getLowestSetBit(); var g = y.getLowestSetBit(); if (g < 0) { return x; } if (i < g) { g = i; } if (g > 0) { x.rShiftTo(g, x); y.rShiftTo(g, y); } while (x.signum() > 0) { if ((i = x.getLowestSetBit()) > 0) { x.rShiftTo(i, x); } if ((i = y.getLowestSetBit()) > 0) { y.rShiftTo(i, y); } if (x.compareTo(y) >= 0) { x.subTo(y, x); x.rShiftTo(1, x); } else { y.subTo(x, y); y.rShiftTo(1, y); } } if (g > 0) { y.lShiftTo(g, y); } return y; }; // BigInteger.prototype.isProbablePrime = bnIsProbablePrime; // (public) test primality with certainty >= 1-.5^t BigInteger.prototype.isProbablePrime = function (t) { var i; var x = this.abs(); if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) { for (i = 0; i < lowprimes.length; ++i) { if (x[0] == lowprimes[i]) { return true; } } return false; } if (x.isEven()) { return false; } i = 1; while (i < lowprimes.length) { var m = lowprimes[i]; var j = i + 1; while (j < lowprimes.length && m < lplim) { m *= lowprimes[j++]; } m = x.modInt(m); while (i < j) { if (m % lowprimes[i++] == 0) { return false; } } } return x.millerRabin(t); }; //#endregion PUBLIC //#region PROTECTED // BigInteger.prototype.copyTo = bnpCopyTo; // (protected) copy this to r BigInteger.prototype.copyTo = function (r) { for (var i = this.t - 1; i >= 0; --i) { r[i] = this[i]; } r.t = this.t; r.s = this.s; }; // BigInteger.prototype.fromInt = bnpFromInt; // (protected) set from integer value x, -DV <= x < DV BigInteger.prototype.fromInt = function (x) { this.t = 1; this.s = (x < 0) ? -1 : 0; if (x > 0) { this[0] = x; } else if (x < -1) { this[0] = x + this.DV; } else { this.t = 0; } }; // BigInteger.prototype.fromString = bnpFromString; // (protected) set from string and radix BigInteger.prototype.fromString = function (s, b) { var k; if (b == 16) { k = 4; } else if (b == 8) { k = 3; } else if (b == 256) { k = 8; /* byte array */ } else if (b == 2) { k = 1; } else if (b == 32) { k = 5; } else if (b == 4) { k = 2; } else { this.fromRadix(s, b); return; } this.t = 0; this.s = 0; var i = s.length; var mi = false; var sh = 0; while (--i >= 0) { var x = (k == 8) ? (+s[i]) & 0xff : intAt(s, i); if (x < 0) { if (s.charAt(i) == "-") { mi = true; } continue; } mi = false; if (sh == 0) { this[this.t++] = x; } else if (sh + k > this.DB) { this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh; this[this.t++] = (x >> (this.DB - sh)); } else { this[this.t - 1] |= x << sh; } sh += k; if (sh >= this.DB) { sh -= this.DB; } } if (k == 8 && ((+s[0]) & 0x80) != 0) { this.s = -1; if (sh > 0) { this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh; } } this.clamp(); if (mi) { BigInteger.ZERO.subTo(this, this); } }; // BigInteger.prototype.clamp = bnpClamp; // (protected) clamp off excess high words BigInteger.prototype.clamp = function () { var c = this.s & this.DM; while (this.t > 0 && this[this.t - 1] == c) { --this.t; } }; // BigInteger.prototype.dlShiftTo = bnpDLShiftTo; // (protected) r = this << n*DB BigInteger.prototype.dlShiftTo = function (n, r) { var i; for (i = this.t - 1; i >= 0; --i) { r[i + n] = this[i]; } for (i = n - 1; i >= 0; --i) { r[i] = 0; } r.t = this.t + n; r.s = this.s; }; // BigInteger.prototype.drShiftTo = bnpDRShiftTo; // (protected) r = this >> n*DB BigInteger.prototype.drShiftTo = function (n, r) { for (var i = n; i < this.t; ++i) { r[i - n] = this[i]; } r.t = Math.max(this.t - n, 0); r.s = this.s; }; // BigInteger.prototype.lShiftTo = bnpLShiftTo; // (protected) r = this << n BigInteger.prototype.lShiftTo = function (n, r) { var bs = n % this.DB; var cbs = this.DB - bs; var bm = (1 << cbs) - 1; var ds = Math.floor(n / this.DB); var c = (this.s << bs) & this.DM; for (var i = this.t - 1; i >= 0; --i) { r[i + ds + 1] = (this[i] >> cbs) | c; c = (this[i] & bm) << bs; } for (var i = ds - 1; i >= 0; --i) { r[i] = 0; } r[ds] = c; r.t = this.t + ds + 1; r.s = this.s; r.clamp(); }; // BigInteger.prototype.rShiftTo = bnpRShiftTo; // (protected) r = this >> n BigInteger.prototype.rShiftTo = function (n, r) { r.s = this.s; var ds = Math.floor(n / this.DB); if (ds >= this.t) { r.t = 0; return; } var bs = n % this.DB; var cbs = this.DB - bs; var bm = (1 << bs) - 1; r[0] = this[ds] >> bs; for (var i = ds + 1; i < this.t; ++i) { r[i - ds - 1] |= (this[i] & bm) << cbs; r[i - ds] = this[i] >> bs; } if (bs > 0) { r[this.t - ds - 1] |= (this.s & bm) << cbs; } r.t = this.t - ds; r.clamp(); }; // BigInteger.prototype.subTo = bnpSubTo; // (protected) r = this - a BigInteger.prototype.subTo = function (a, r) { var i = 0; var c = 0; var m = Math.min(a.t, this.t); while (i < m) { c += this[i] - a[i]; r[i++] = c & this.DM; c >>= this.DB; } if (a.t < this.t) { c -= a.s; while (i < this.t) { c += this[i]; r[i++] = c & this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while (i < a.t) { c -= a[i]; r[i++] = c & this.DM; c >>= this.DB; } c -= a.s; } r.s = (c < 0) ? -1 : 0; if (c < -1) { r[i++] = this.DV + c; } else if (c > 0) { r[i++] = c; } r.t = i; r.clamp(); }; // BigInteger.prototype.multiplyTo = bnpMultiplyTo; // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. BigInteger.prototype.multiplyTo = function (a, r) { var x = this.abs(); var y = a.abs(); var i = x.t; r.t = i + y.t; while (--i >= 0) { r[i] = 0; } for (i = 0; i < y.t; ++i) { r[i + x.t] = x.am(0, y[i], r, i, 0, x.t); } r.s = 0; r.clamp(); if (this.s != a.s) { BigInteger.ZERO.subTo(r, r); } }; // BigInteger.prototype.squareTo = bnpSquareTo; // (protected) r = this^2, r != this (HAC 14.16) BigInteger.prototype.squareTo = function (r) { var x = this.abs(); var i = r.t = 2 * x.t; while (--i >= 0) { r[i] = 0; } for (i = 0; i < x.t - 1; ++i) { var c = x.am(i, x[i], r, 2 * i, 0, 1); if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) { r[i + x.t] -= x.DV; r[i + x.t + 1] = 1; } } if (r.t > 0) { r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1); } r.s = 0; r.clamp(); }; // BigInteger.prototype.divRemTo = bnpDivRemTo; // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. BigInteger.prototype.divRemTo = function (m, q, r) { var pm = m.abs(); if (pm.t <= 0) { return; } var pt = this.abs(); if (pt.t < pm.t) { if (q != null) { q.fromInt(0); } if (r != null) { this.copyTo(r); } return; } if (r == null) { r = nbi(); } var y = nbi(); var ts = this.s; var ms = m.s; var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus if (nsh > 0) { pm.lShiftTo(nsh, y); pt.lShiftTo(nsh, r); } else { pm.copyTo(y); pt.copyTo(r); } var ys = y.t; var y0 = y[ys - 1]; if (y0 == 0) { return; } var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0); var d1 = this.FV / yt; var d2 = (1 << this.F1) / yt; var e = 1 << this.F2; var i = r.t; var j = i - ys; var t = (q == null) ? nbi() : q; y.dlShiftTo(j, t); if (r.compareTo(t) >= 0) { r[r.t++] = 1; r.subTo(t, r); } BigInteger.ONE.dlShiftTo(ys, t); t.subTo(y, y); // "negative" y so we can replace sub with am later while (y.t < ys) { y[y.t++] = 0; } while (--j >= 0) { // Estimate quotient digit var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2); if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out y.dlShiftTo(j, t); r.subTo(t, r); while (r[i] < --qd) { r.subTo(t, r); } } } if (q != null) { r.drShiftTo(ys, q); if (ts != ms) { BigInteger.ZERO.subTo(q, q); } } r.t = ys; r.clamp(); if (nsh > 0) { r.rShiftTo(nsh, r); } // Denormalize remainder if (ts < 0) { BigInteger.ZERO.subTo(r, r); } }; // BigInteger.prototype.invDigit = bnpInvDigit; // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. BigInteger.prototype.invDigit = function () { if (this.t < 1) { return 0; } var x = this[0]; if ((x & 1) == 0) { return 0; } var y = x & 3; // y == 1/x mod 2^2 y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4 y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8 y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y > 0) ? this.DV - y : -y; }; // BigInteger.prototype.isEven = bnpIsEven; // (protected) true iff this is even BigInteger.prototype.isEven = function () { return ((this.t > 0) ? (this[0] & 1) : this.s) == 0; }; // BigInteger.prototype.exp = bnpExp; // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) BigInteger.prototype.exp = function (e, z) { if (e > 0xffffffff || e < 1) { return BigInteger.ONE; } var r = nbi(); var r2 = nbi(); var g = z.convert(this); var i = nbits(e) - 1; g.copyTo(r); while (--i >= 0) { z.sqrTo(r, r2); if ((e & (1 << i)) > 0) { z.mulTo(r2, g, r); } else { var t = r; r = r2; r2 = t; } } return z.revert(r); }; // BigInteger.prototype.chunkSize = bnpChunkSize; // (protected) return x s.t. r^x < DV BigInteger.prototype.chunkSize = function (r) { return Math.floor(Math.LN2 * this.DB / Math.log(r)); }; // BigInteger.prototype.toRadix = bnpToRadix; // (protected) convert to radix string BigInteger.prototype.toRadix = function (b) { if (b == null) { b = 10; } if (this.signum() == 0 || b < 2 || b > 36) { return "0"; } var cs = this.chunkSize(b); var a = Math.pow(b, cs); var d = nbv(a); var y = nbi(); var z = nbi(); var r = ""; this.divRemTo(d, y, z); while (y.signum() > 0) { r = (a + z.intValue()).toString(b).substr(1) + r; y.divRemTo(d, y, z); } return z.intValue().toString(b) + r; }; // BigInteger.prototype.fromRadix = bnpFromRadix; // (protected) convert from radix string BigInteger.prototype.fromRadix = function (s, b) { this.fromInt(0); if (b == null) { b = 10; } var cs = this.chunkSize(b); var d = Math.pow(b, cs); var mi = false; var j = 0; var w = 0; for (var i = 0; i < s.length; ++i) { var x = intAt(s, i); if (x < 0) { if (s.charAt(i) == "-" && this.signum() == 0) { mi = true; } continue; } w = b * w + x; if (++j >= cs) { this.dMultiply(d); this.dAddOffset(w, 0); j = 0; w = 0; } } if (j > 0) { this.dMultiply(Math.pow(b, j)); this.dAddOffset(w, 0); } if (mi) { BigInteger.ZERO.subTo(this, this); } }; // BigInteger.prototype.fromNumber = bnpFromNumber; // (protected) alternate constructor BigInteger.prototype.fromNumber = function (a, b, c) { if ("number" == typeof b) { // new BigInteger(int,int,RNG) if (a < 2) { this.fromInt(1); } else { this.fromNumber(a, c); if (!this.testBit(a - 1)) { // force MSB set this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this); } if (this.isEven()) { this.dAddOffset(1, 0); } // force odd while (!this.isProbablePrime(b)) { this.dAddOffset(2, 0); if (this.bitLength() > a) { this.subTo(BigInteger.ONE.shiftLeft(a - 1), this); } } } } else { // new BigInteger(int,RNG) var x = []; var t = a & 7; x.length = (a >> 3) + 1; b.nextBytes(x); if (t > 0) { x[0] &= ((1 << t) - 1); } else { x[0] = 0; } this.fromString(x, 256); } }; // BigInteger.prototype.bitwiseTo = bnpBitwiseTo; // (protected) r = this op a (bitwise) BigInteger.prototype.bitwiseTo = function (a, op, r) { var i; var f; var m = Math.min(a.t, this.t); for (i = 0; i < m; ++i) { r[i] = op(this[i], a[i]); } if (a.t < this.t) { f = a.s & this.DM; for (i = m; i < this.t; ++i) { r[i] = op(this[i], f); } r.t = this.t; } else { f = this.s & this.DM; for (i = m; i < a.t; ++i) { r[i] = op(f, a[i]); } r.t = a.t; } r.s = op(this.s, a.s); r.clamp(); }; // BigInteger.prototype.changeBit = bnpChangeBit; // (protected) this op (1<<n) BigInteger.prototype.changeBit = function (n, op) { var r = BigInteger.ONE.shiftLeft(n); this.bitwiseTo(r, op, r); return r; }; // BigInteger.prototype.addTo = bnpAddTo; // (protected) r = this + a BigInteger.prototype.addTo = function (a, r) { var i = 0; var c = 0; var m = Math.min(a.t, this.t); while (i < m) { c += this[i] + a[i]; r[i++] = c & this.DM; c >>= this.DB; } if (a.t < this.t) { c += a.s; while (i < this.t) { c += this[i]; r[i++] = c & this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while (i < a.t) { c += a[i]; r[i++] = c & this.DM; c >>= this.DB; } c += a.s; } r.s = (c < 0) ? -1 : 0; if (c > 0) { r[i++] = c; } else if (c < -1) { r[i++] = this.DV + c; } r.t = i; r.clamp(); }; // BigInteger.prototype.dMultiply = bnpDMultiply; // (protected) this *= n, this >= 0, 1 < n < DV BigInteger.prototype.dMultiply = function (n) { this[this.t] = this.am(0, n - 1, this, 0, 0, this.t); ++this.t; this.clamp(); }; // BigInteger.prototype.dAddOffset = bnpDAddOffset; // (protected) this += n << w words, this >= 0 BigInteger.prototype.dAddOffset = function (n, w) { if (n == 0) { return; } while (this.t <= w) { this[this.t++] = 0; } this[w] += n; while (this[w] >= this.DV) { this[w] -= this.DV; if (++w >= this.t) { this[this.t++] = 0; } ++this[w]; } }; // BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; // (protected) r = lower n words of "this * a", a.t <= n // "this" should be the larger one if appropriate. BigInteger.prototype.multiplyLowerTo = function (a, n, r) { var i = Math.min(this.t + a.t, n); r.s = 0; // assumes a,this >= 0 r.t = i; while (i > 0) { r[--i] = 0; } for (var j = r.t - this.t; i < j; ++i) { r[i + this.t] = this.am(0, a[i], r, i, 0, this.t); } for (var j = Math.min(a.t, n); i < j; ++i) { this.am(0, a[i], r, i, 0, n - i); } r.clamp(); }; // BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; // (protected) r = "this * a" without lower n words, n > 0 // "this" should be the larger one if appropriate. BigInteger.prototype.multiplyUpperTo = function (a, n, r) { --n; var i = r.t = this.t + a.t - n; r.s = 0; // assumes a,this >= 0 while (--i >= 0) { r[i] = 0; } for (i = Math.max(n - this.t, 0); i < a.t; ++i) { r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n); } r.clamp(); r.drShiftTo(1, r); }; // BigInteger.prototype.modInt = bnpModInt; // (protected) this % n, n < 2^26 BigInteger.prototype.modInt = function (n) { if (n <= 0) { return 0; } var d = this.DV % n; var r = (this.s < 0) ? n - 1 : 0; if (this.t > 0) { if (d == 0) { r = this[0] % n; } else { for (var i = this.t - 1; i >= 0; --i) { r = (d * r + this[i]) % n; } } } return r; }; // BigInteger.prototype.millerRabin = bnpMillerRabin; // (protected) true if probably prime (HAC 4.24, Miller-Rabin) BigInteger.prototype.millerRabin = function (t) { var n1 = this.subtract(BigInteger.ONE); var k = n1.getLowestSetBit(); if (k <= 0) { return false; } var r = n1.shiftRight(k); t = (t + 1) >> 1; if (t > lowprimes.length) { t = lowprimes.length; } var a = nbi(); for (var i = 0; i < t; ++i) { // Pick bases at random, instead of starting at 2 a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]); var y = a.modPow(r, this); if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { var j = 1; while (j++ < k && y.compareTo(n1) != 0) { y = y.modPowInt(2, this); if (y.compareTo(BigInteger.ONE) == 0) { return false; } } if (y.compareTo(n1) != 0) { return false; } } } return true; }; // BigInteger.prototype.square = bnSquare; // (public) this^2 BigInteger.prototype.square = function () { var r = nbi(); this.squareTo(r); return r; }; //#region ASYNC // Public API method BigInteger.prototype.gcda = function (a, callback) { var x = (this.s < 0) ? this.negate() : this.clone(); var y = (a.s < 0) ? a.negate() : a.clone(); if (x.compareTo(y) < 0) { var t = x; x = y; y = t; } var i = x.getLowestSetBit(); var g = y.getLowestSetBit(); if (g < 0) { callback(x); return; } if (i < g) { g = i; } if (g > 0) { x.rShiftTo(g, x); y.rShiftTo(g, y); } // Workhorse of the algorithm, gets called 200 - 800 times per 512 bit keygen. var gcda1 = function () { if ((i = x.getLowestSetBit()) > 0) { x.rShiftTo(i, x); } if ((i = y.getLowestSetBit()) > 0) { y.rShiftTo(i, y); } if (x.compareTo(y) >= 0) { x.subTo(y, x); x.rShiftTo(1, x); } else { y.subTo(x, y); y.rShiftTo(1, y); } if (!(x.signum() > 0)) { if (g > 0) { y.lShiftTo(g, y); } setTimeout(function () { callback(y); }, 0); // escape } else { setTimeout(gcda1, 0); } }; setTimeout(gcda1, 10); }; // (protected) alternate constructor BigInteger.prototype.fromNumberAsync = function (a, b, c, callback) { if ("number" == typeof b) { if (a < 2) { this.fromInt(1); } else { this.fromNumber(a, c); if (!this.testBit(a - 1)) { this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this); } if (this.isEven()) { this.dAddOffset(1, 0); } var bnp_1 = this; var bnpfn1_1 = function () { bnp_1.dAddOffset(2, 0); if (bnp_1.bitLength() > a) { bnp_1.subTo(BigInteger.ONE.shiftLeft(a - 1), bnp_1); } if (bnp_1.isProbablePrime(b)) { setTimeout(function () { callback(); }, 0); // escape } else { setTimeout(bnpfn1_1, 0); } }; setTimeout(bnpfn1_1, 0); } } else { var x = []; var t = a & 7; x.length = (a >> 3) + 1; b.nextBytes(x); if (t > 0) { x[0] &= ((1 << t) - 1); } else { x[0] = 0; } this.fromString(x, 256); } }; return BigInteger; }()); //#region REDUCERS //#region NullExp var NullExp = /** @class */ (function () { function NullExp() { } // NullExp.prototype.convert = nNop; NullExp.prototype.convert = function (x) { return x; }; // NullExp.prototype.revert = nNop; NullExp.prototype.revert = function (x) { return x; }; // NullExp.prototype.mulTo = nMulTo; NullExp.prototype.mulTo = function (x, y, r) { x.multiplyTo(y, r); }; // NullExp.prototype.sqrTo = nSqrTo; NullExp.prototype.sqrTo = function (x, r) { x.squareTo(r); }; return NullExp; }()); // Modular reduction using "classic" algorithm var Classic = /** @class */ (function () { function Classic(m) { this.m = m; } // Classic.prototype.convert = cConvert; Classic.prototype.convert = function (x) { if (x.s < 0 || x.compareTo(this.m) >= 0) { return x.mod(this.m); } else { return x; } }; // Classic.prototype.revert = cRevert; Classic.prototype.revert = function (x) { return x; }; // Classic.prototype.reduce = cReduce; Classic.prototype.reduce = function (x) { x.divRemTo(this.m, null, x); }; // Classic.prototype.mulTo = cMulTo; Classic.prototype.mulTo = function (x, y, r) { x.multiplyTo(y, r); this.reduce(r); }; // Classic.prototype.sqrTo = cSqrTo; Classic.prototype.sqrTo = function (x, r) { x.squareTo(r); this.reduce(r); }; return Classic; }()); //#endregion //#region Montgomery // Montgomery reduction var Montgomery = /** @class */ (function () { function Montgomery(m) { this.m = m; this.mp = m.invDigit(); this.mpl = this.mp & 0x7fff; this.mph = this.mp >> 15; this.um = (1 << (m.DB - 15)) - 1; this.mt2 = 2 * m.t; } // Montgomery.prototype.convert = montConvert; // xR mod m Montgomery.prototype.convert = function (x) { var r = nbi(); x.abs().dlShiftTo(this.m.t, r); r.divRemTo(this.m, null, r); if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) { this.m.subTo(r, r); } return r; }; // Montgomery.prototype.revert = montRevert; // x/R mod m Montgomery.prototype.revert = function (x) { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }; // Montgomery.prototype.reduce = montReduce; // x = x/R mod m (HAC 14.32) Montgomery.prototype.reduce = function (x) { while (x.t <= this.mt2) { // pad x so am has enough room later x[x.t++] = 0; } for (var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i] & 0x7fff; var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM; // use am to combine the multiply-shift-add into one call j = i + this.m.t; x[j] += this.m.am(0, u0, x, i, 0, this.m.t); // propagate carry while (x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } } x.clamp(); x.drShiftTo(this.m.t, x); if (x.compareTo(this.m) >= 0) { x.subTo(this.m, x); } }; // Montgomery.prototype.mulTo = montMulTo; // r = "xy/R mod m"; x,y != r Montgomery.prototype.mulTo = function (x, y, r) { x.multiplyTo(y, r); this.reduce(r); }; // Montgomery.prototype.sqrTo = montSqrTo; // r = "x^2/R mod m"; x != r Montgomery.prototype.sqrTo = function (x, r) { x.squareTo(r); this.reduce(r); }; return Montgomery; }()); //#endregion Montgomery //#region Barrett // Barrett modular reduction var Barrett = /** @class */ (function () { function Barrett(m) { this.m = m; // setup Barrett this.r2 = nbi(); this.q3 = nbi(); BigInteger.ONE.dlShiftTo(2 * m.t, this.r2); this.mu = this.r2.divide(m); } // Barrett.prototype.convert = barrettConvert; Barrett.prototype.convert = function (x) { if (x.s < 0 || x.t > 2 * this.m.t) { return x.mod(this.m); } else if (x.compareTo(this.m) < 0) { return x; } else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } }; // Barrett.prototype.revert = barrettRevert; Barrett.prototype.revert = function (x) { return x; }; // Barrett.prototype.reduce = barrettReduce; // x = x mod m (HAC 14.42) Barrett.prototype.reduce = function (x) { x.drShiftTo(this.m.t - 1, this.r2); if (x.t > this.m.t + 1) { x.t = this.m.t + 1; x.clamp(); } this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3); this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2); while (x.compareTo(this.r2) < 0) { x.dAddOffset(1, this.m.t + 1); } x.subTo(this.r2, x); while (x.compareTo(this.m) >= 0) { x.subTo(this.m, x); } }; // Barrett.prototype.mulTo = barrettMulTo; // r = x*y mod m; x,y != r Barrett.prototype.mulTo = function (x, y, r) { x.multiplyTo(y, r); this.reduce(r); }; // Barrett.prototype.sqrTo = barrettSqrTo; // r = x^2 mod m; x != r Barrett.prototype.sqrTo = function (x, r) { x.squareTo(r); this.reduce(r); }; return Barrett; }()); //#endregion //#endregion REDUCERS // return new, unset BigInteger function nbi() { return new BigInteger(null); } function parseBigInt(str, r) { return new BigInteger(str, r); } // am: Compute w_j += (x*this_i), propagate carries, // c is initial carry, returns final carry. // c < 3*dvalue, x < 2*dvalue, this_i < dvalue // We need to select the fastest one that works in this environment. // am1: use a single mult and divide to get the high bits, // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) function am1(i, x, w, j, c, n) { while (--n >= 0) { var v = x * this[i++] + w[j] + c; c = Math.floor(v / 0x4000000); w[j++] = v & 0x3ffffff; } return c; } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2(i, x, w, j, c, n) { var xl = x & 0x7fff; var xh = x >> 15; while (--n >= 0) { var l = this[i] & 0x7fff; var h = this[i++] >> 15; var m = xh * l + h * xl; l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff); c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30); w[j++] = l & 0x3fffffff; } return c; } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3(i, x, w, j, c, n) { var xl = x & 0x3fff; var xh = x >> 14; while (--n >= 0) { var l = this[i] & 0x3fff; var h = this[i++] >> 14; var m = xh * l + h * xl; l = xl * l + ((m & 0x3fff) << 14) + w[j] + c; c = (l >> 28) + (m >> 14) + xh * h; w[j++] = l & 0xfffffff; } return c; } if (j_lm && (navigator.appName == "Microsoft Internet Explorer")) { BigInteger.prototype.am = am2; dbits = 30; } else if (j_lm && (navigator.appName != "Netscape")) { BigInteger.prototype.am = am1; dbits = 26; } else { // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28; } BigInteger.prototype.DB = dbits; BigInteger.prototype.DM = ((1 << dbits) - 1); BigInteger.prototype.DV = (1 << dbits); var BI_FP = 52; BigInteger.prototype.FV = Math.pow(2, BI_FP); BigInteger.prototype.F1 = BI_FP - dbits; BigInteger.prototype.F2 = 2 * dbits - BI_FP; // Digit conversions var BI_RC = []; var rr; var vv; rr = "0".charCodeAt(0); for (vv = 0; vv <= 9; ++vv) { BI_RC[rr++] = vv; } rr = "a".charCodeAt(0); for (vv = 10; vv < 36; ++vv) { BI_RC[rr++] = vv; } rr = "A".charCodeAt(0); for (vv = 10; vv < 36; ++vv) { BI_RC[rr++] = vv; } function intAt(s, i) { var c = BI_RC[s.charCodeAt(i)]; return (c == null) ? -1 : c; } // return bigint initialized to value function nbv(i) { var r = nbi(); r.fromInt(i); return r; } // returns bit length of the integer x function nbits(x) { var r = 1; var t; if ((t = x >>> 16) != 0) { x = t; r += 16; } if ((t = x >> 8) != 0) { x = t; r += 8; } if ((t = x >> 4) != 0) { x = t; r += 4; } if ((t = x >> 2) != 0) { x = t; r += 2; } if ((t = x >> 1) != 0) { x = t; r += 1; } return r; } // "constants" BigInteger.ZERO = nbv(0); BigInteger.ONE = nbv(1); // prng4.js - uses Arcfour as a PRNG var Arcfour = /** @class */ (function () { function Arcfour() { this.i = 0; this.j = 0; this.S = []; } // Arcfour.prototype.init = ARC4init; // Initialize arcfour context from key, an array of ints, each from [0..255] Arcfour.prototype.init = function (key) { var i; var j; var t; for (i = 0; i < 256; ++i) { this.S[i] = i; } j = 0; for (i = 0; i < 256; ++i) { j = (j + this.S[i] + key[i % key.length]) & 255; t = this.S[i]; this.S[i] = this.S[j]; this.S[j] = t; } this.i = 0; this.j = 0; }; // Arcfour.prototype.next = ARC4next; Arcfour.prototype.next = function () { var t; this.i = (this.i + 1) & 255; this.j = (this.j + this.S[this.i]) & 255; t = this.S[this.i]; this.S[this.i] = this.S[this.j]; this.S[this.j] = t; return this.S[(t + this.S[this.i]) & 255]; }; return Arcfour; }()); // Plug in your RNG constructor here function prng_newstate() { return new Arcfour(); } // Pool size must be a multiple of 4 and greater than 32. // An array of bytes the size of the pool will be passed to init() var rng_psize = 256; // Random number generator - requires a PRNG backend, e.g. prng4.js var rng_state; var rng_pool = null; var rng_pptr; // Initialize the pool with junk if needed. if (rng_pool == null) { rng_pool = []; rng_pptr = 0; var t = void 0; if (window.crypto && window.crypto.getRandomValues) { // Extract entropy (2048 bits) from RNG if available var z = new Uint32Array(256); window.crypto.getRandomValues(z); for (t = 0; t < z.length; ++t) { rng_pool[rng_pptr++] = z[t] & 255; } } // Use mouse events for entropy, if we do not have enough entropy by the time // we need it, entropy will be generated by Math.random. var onMouseMoveListener_1 = function (ev) { this.count = this.count || 0; if (this.count >= 256 || rng_pptr >= rng_psize) { if (window.removeEventListener) { window.removeEventListener("mousemove", onMouseMoveListener_1, false); } else if (window.detachEvent) { window.detachEvent("onmousemove", onMouseMoveListener_1); } return; } try { var mouseCoordinates = ev.x + ev.y; rng_pool[rng_pptr++] = mouseCoordinates & 255; this.count += 1; } catch (e) { // Sometimes Firefox will deny permission to access event properties for some reason. Ignore. } }; if (window.addEventListener) { window.addEventListener("mousemove", onMouseMoveListener_1, false); } else if (window.attachEvent) { window.attachEvent("onmousemove", onMouseMoveListener_1); } } function rng_get_byte() { if (rng_state == null) { rng_state = prng_newstate(); // At this point, we may not have collected enough entropy. If not, fall back to Math.random while (rng_pptr < rng_psize) { var random = Math.floor(65536 * Math.random()); rng_pool[rng_pptr++] = random & 255; } rng_state.init(rng_pool); for (rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) { rng_pool[rng_pptr] = 0; } rng_pptr = 0; } // TODO: allow reseeding after first request return rng_state.next(); } var SecureRandom = /** @class */ (function () { function SecureRandom() { } SecureRandom.prototype.nextBytes = function (ba) { for (var i = 0; i < ba.length; ++i) { ba[i] = rng_get_byte(); } }; return SecureRandom; }()); // Depends on jsbn.js and rng.js // function linebrk(s,n) { // var ret = ""; // var i = 0; // while(i + n < s.length) { // ret += s.substring(i,i+n) + " "; // i += n; // } // return ret + s.substring(i,s.length); // } // function byte2Hex(b) { // if(b < 0x10) // return "0" + b.toString(16); // else // return b.toString(16); // } function pkcs1pad1(s, n) { if (n < s.length + 22) { console.error("Message too long for RSA"); return null; } var len = n - s.length - 6; var filler = ""; for (var f = 0; f < len; f += 2) { filler += "ff"; } var m = "0001" + filler + "00" + s; return parseBigInt(m, 16); } // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint function pkcs1pad2(s, n) { if (n < s.length + 11) { // TODO: fix for utf-8 console.error("Message too long for RSA"); return null; } var ba = []; var i = s.length - 1; while (i >= 0 && n > 0) { var c = s.charCodeAt(i--); if (c < 128) { // encode using utf-8 ba[--n] = c; } else if ((c > 127) && (c < 2048)) { ba[--n] = (c & 63) | 128; ba[--n] = (c >> 6) | 192; } else { ba[--n] = (c & 63) | 128; ba[--n] = ((c >> 6) & 63) | 128; ba[--n] = (c >> 12) | 224; } } ba[--n] = 0; var rng = new SecureRandom(); var x = []; while (n > 2) { // random non-zero pad x[0] = 0; while (x[0] == 0) { rng.nextBytes(x); } ba[--n] = x[0]; } ba[--n] = 2; ba[--n] = 0; return new BigInteger(ba); } // "empty" RSA key constructor var RSAKey = /** @class */ (function () { function RSAKey() { this.n = null; this.e = 0; this.d = null; this.p = null; this.q = null; this.dmp1 = null; this.dmq1 = null; this.coeff = null; } //#region PROTECTED // protected // RSAKey.prototype.doPublic = RSADoPublic; // Perform raw public operation on "x": return x^e (mod n) RSAKey.prototype.doPublic = function (x) { return x.modPowInt(this.e, this.n); }; // RSAKey.prototype.doPrivate = RSADoPrivate; // Perform raw private operation on "x": return x^d (mod n) RSAKey.prototype.doPrivate = function (x) { if (this.p == null || this.q == null) { return x.modPow(this.d, this.n); } // TODO: re-calculate any missing CRT params var xp = x.mod(this.p).modPow(this.dmp1, this.p); var xq = x.mod(this.q).modPow(this.dmq1, this.q); while (xp.compareTo(xq) < 0) { xp = xp.add(this.p); } return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq); }; //#endregion PROTECTED //#region PUBLIC // RSAKey.prototype.setPublic = RSASetPublic; // Set the public key fields N and e from hex strings RSAKey.prototype.setPublic = function (N, E) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16); this.e = parseInt(E, 16); } else { console.error("Invalid RSA public key"); } }; // RSAKey.prototype.encrypt = RSAEncrypt; // Return the PKCS#1 RSA encryption of "text" as an even-length hex string RSAKey.prototype.encrypt = function (text) { var m = pkcs1pad2(text, (this.n.bitLength() + 7) >> 3); if (m == null) { return null; } var c = this.doPublic(m); if (c == null) { return null; } var h = c.toString(16); if ((h.length & 1) == 0) { return h; } else { return "0" + h; } }; // RSAKey.prototype.setPrivate = RSASetPrivate; // Set the private key fields N, e, and d from hex strings RSAKey.prototype.setPrivate = function (N, E, D) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16); this.e = parseInt(E, 16); this.d = parseBigInt(D, 16); } else { console.error("Invalid RSA private key"); } }; // RSAKey.prototype.setPrivateEx = RSASetPrivateEx; // Set the private key fields N, e, d and CRT params from hex strings RSAKey.prototype.setPrivateEx = function (N, E, D, P, Q, DP, DQ, C) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16); this.e = parseInt(E, 16); this.d = parseBigInt(D, 16); this.p = parseBigInt(P, 16); this.q = parseBigInt(Q, 16); this.dmp1 = parseBigInt(DP, 16); this.dmq1 = parseBigInt(DQ, 16); this.coeff = parseBigInt(C, 16); } else { console.error("Invalid RSA private key"); } }; // RSAKey.prototype.generate = RSAGenerate; // Generate a new random private key B bits long, using public expt E RSAKey.prototype.generate = function (B, E) { var rng = new SecureRandom(); var qs = B >> 1; this.e = parseInt(E, 16); var ee = new BigInteger(E, 16); for (;;) { for (;;) { this.p = new BigInteger(B - qs, 1, rng); if (this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) { break; } } for (;;) { this.q = new BigInteger(qs, 1, rng); if (this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) { break; } } if (this.p.compareTo(this.q) <= 0) { var t = this.p; this.p = this.q; this.q = t; } var p1 = this.p.subtract(BigInteger.ONE); var q1 = this.q.subtract(BigInteger.ONE); var phi = p1.multiply(q1); if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { this.n = this.p.multiply(this.q); this.d = ee.modInverse(phi); this.dmp1 = this.d.mod(p1); this.dmq1 = this.d.mod(q1); this.coeff = this.q.modInverse(this.p); break; } } }; // RSAKey.prototype.decrypt = RSADecrypt; // Return the PKCS#1 RSA decryption of "ctext". // "ctext" is an even-length hex string and the output is a plain string. RSAKey.prototype.decrypt = function (ctext) { var c = parseBigInt(ctext, 16); var m = this.doPrivate(c); if (m == null) { return null; } return pkcs1unpad2(m, (this.n.bitLength() + 7) >> 3); }; // Generate a new random private key B bits long, using public expt E RSAKey.prototype.generateAsync = function (B, E, callback) { var rng = new SecureRandom(); var qs = B >> 1; this.e = parseInt(E, 16); var ee = new BigInteger(E, 16); var rsa = this; // These functions have non-descript names because they were originally for(;;) loops. // I don‘t know about cryptography to give them better names than loop1-4. var loop1 = function () { var loop4 = function () { if (rsa.p.compareTo(rsa.q) <= 0) { var t = rsa.p; rsa.p = rsa.q; rsa.q = t; } var p1 = rsa.p.subtract(BigInteger.ONE); var q1 = rsa.q.subtract(BigInteger.ONE); var phi = p1.multiply(q1); if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { rsa.n = rsa.p.multiply(rsa.q); rsa.d = ee.modInverse(phi); rsa.dmp1 = rsa.d.mod(p1); rsa.dmq1 = rsa.d.mod(q1); rsa.coeff = rsa.q.modInverse(rsa.p); setTimeout(function () { callback(); }, 0); // escape } else { setTimeout(loop1, 0); } }; var loop3 = function () { rsa.q = nbi(); rsa.q.fromNumberAsync(qs, 1, rng, function () { rsa.q.subtract(BigInteger.ONE).gcda(ee, function (r) { if (r.compareTo(BigInteger.ONE) == 0 && rsa.q.isProbablePrime(10)) { setTimeout(loop4, 0); } else { setTimeout(loop3, 0); } }); }); }; var loop2 = function () { rsa.p = nbi(); rsa.p.fromNumberAsync(B - qs, 1, rng, function () { rsa.p.subtract(BigInteger.ONE).gcda(ee, function (r) { if (r.compareTo(BigInteger.ONE) == 0 && rsa.p.isProbablePrime(10)) { setTimeout(loop3, 0); } else { setTimeout(loop2, 0); } }); }); }; setTimeout(loop2, 0); }; setTimeout(loop1, 0); }; RSAKey.prototype.sign = function (text, digestMethod, digestName) { var header = getDigestHeader(digestName); var digest = header + digestMethod(text).toString(); var m = pkcs1pad1(digest, this.n.bitLength() / 4); if (m == null) { return null; } var c = this.doPrivate(m); if (c == null) { return null; } var h = c.toString(16); if ((h.length & 1) == 0) { return h; } else { return "0" + h; } }; RSAKey.prototype.verify = function (text, signature, digestMethod) { var c = parseBigInt(signature, 16); var m = this.doPublic(c); if (m == null) { return null; } var unpadded = m.toString(16).replace(/^1f+00/, ""); var digest = removeDigestHeader(unpadded); return digest == digestMethod(text).toString(); }; return RSAKey; }()); // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext function pkcs1unpad2(d, n) { var b = d.toByteArray(); var i = 0; while (i < b.length && b[i] == 0) { ++i; } if (b.length - i != n - 1 || b[i] != 2) { return null; } ++i; while (b[i] != 0) { if (++i >= b.length) { return null; } } var ret = ""; while (++i < b.length) { var c = b[i] & 255; if (c < 128) { // utf-8 decode ret += String.fromCharCode(c); } else if ((c > 191) && (c < 224)) { ret += String.fromCharCode(((c & 31) << 6) | (b[i + 1] & 63)); ++i; } else { ret += String.fromCharCode(((c & 15) << 12) | ((b[i + 1] & 63) << 6) | (b[i + 2] & 63)); i += 2; } } return ret; } // https://tools.ietf.org/html/rfc3447#page-43 var DIGEST_HEADERS = { md2: "3020300c06082a864886f70d020205000410", md5: "3020300c06082a864886f70d020505000410", sha1: "3021300906052b0e03021a05000414", sha224: "302d300d06096086480165030402040500041c", sha256: "3031300d060960864801650304020105000420", sha384: "3041300d060960864801650304020205000430", sha512: "3051300d060960864801650304020305000440", ripemd160: "3021300906052b2403020105000414", }; function getDigestHeader(name) { return DIGEST_HEADERS[name] || ""; } function removeDigestHeader(str) { for (var name_1 in DIGEST_HEADERS) { if (DIGEST_HEADERS.hasOwnProperty(name_1)) { var header = DIGEST_HEADERS[name_1]; var len = header.length; if (str.substr(0, len) == header) { return str.substr(len); } } } return str; } // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string // function RSAEncryptB64(text) { // var h = this.encrypt(text); // if(h) return hex2b64(h); else return null; // } // public // RSAKey.prototype.encrypt_b64 = RSAEncryptB64; /*! Copyright (c) 2011, Yahoo! Inc. All rights reserved. Code licensed under the BSD License: http://developer.yahoo.com/yui/license.html version: 2.9.0 */ var YAHOO = {}; YAHOO.lang = { /** * Utility to set up the prototype, constructor and superclass properties to * support an inheritance strategy that can chain constructors and methods. * Static members will not be inherited. * * @method extend * @static * @param {Function} subc the object to modify * @param {Function} superc the object to inherit * @param {Object} overrides additional properties/methods to add to the * subclass prototype. These will override the * matching items obtained from the superclass * if present. */ extend: function(subc, superc, overrides) { if (! superc || ! subc) { throw new Error("YAHOO.lang.extend failed, please check that " + "all dependencies are included."); } var F = function() {}; F.prototype = superc.prototype; subc.prototype = new F(); subc.prototype.constructor = subc; subc.superclass = superc.prototype; if (superc.prototype.constructor == Object.prototype.constructor) { superc.prototype.constructor = superc; } if (overrides) { var i; for (i in overrides) { subc.prototype[i] = overrides[i]; } /* * IE will not enumerate native functions in a derived object even if the * function was overridden. This is a workaround for specific functions * we care about on the Object prototype. * @property _IEEnumFix * @param {Function} r the object to receive the augmentation * @param {Function} s the object that supplies the properties to augment * @static * @private */ var _IEEnumFix = function() {}, ADD = ["toString", "valueOf"]; try { if (/MSIE/.test(navigator.userAgent)) { _IEEnumFix = function(r, s) { for (i = 0; i < ADD.length; i = i + 1) { var fname = ADD[i], f = s[fname]; if (typeof f === ‘function‘ && f != Object.prototype[fname]) { r[fname] = f; } } }; } } catch (ex) {} _IEEnumFix(subc.prototype, overrides); } } }; /* asn1-1.0.13.js (c) 2013-2017 Kenji Urushima | kjur.github.com/jsrsasign/license */ /** * @fileOverview * @name asn1-1.0.js * @author Kenji Urushima [email protected] * @version asn1 1.0.13 (2017-Jun-02) * @since jsrsasign 2.1 * @license <a href="https://kjur.github.io/jsrsasign/license/">MIT License</a> */ /** * kjur‘s class library name space * <p> * This name space provides following name spaces: * <ul> * <li>{@link KJUR.asn1} - ASN.1 primitive hexadecimal encoder</li> * <li>{@link KJUR.asn1.x509} - ASN.1 structure for X.509 certificate and CRL</li> * <li>{@link KJUR.crypto} - Java Cryptographic Extension(JCE) style MessageDigest/Signature * class and utilities</li> * </ul> * </p> * NOTE: Please ignore method summary and document of this namespace. This caused by a bug of jsdoc2. * @name KJUR * @namespace kjur‘s class library name space */ var KJUR = {}; /** * kjur‘s ASN.1 class library name space * <p> * This is ITU-T X.690 ASN.1 DER encoder class library and * class structure and methods is very similar to * org.bouncycastle.asn1 package of * well known BouncyCaslte Cryptography Library. * <h4>PROVIDING ASN.1 PRIMITIVES</h4> * Here are ASN.1 DER primitive classes. * <ul> * <li>0x01 {@link KJUR.asn1.DERBoolean}</li> * <li>0x02 {@link KJUR.asn1.DERInteger}</li> * <li>0x03 {@link KJUR.asn1.DERBitString}</li> * <li>0x04 {@link KJUR.asn1.DEROctetString}</li> * <li>0x05 {@link KJUR.asn1.DERNull}</li> * <li>0x06 {@link KJUR.asn1.DERObjectIdentifier}</li> * <li>0x0a {@link KJUR.asn1.DEREnumerated}</li> * <li>0x0c {@link KJUR.asn1.DERUTF8String}</li> * <li>0x12 {@link KJUR.asn1.DERNumericString}</li> * <li>0x13 {@link KJUR.asn1.DERPrintableString}</li> * <li>0x14 {@link KJUR.asn1.DERTeletexString}</li> * <li>0x16 {@link KJUR.asn1.DERIA5String}</li> * <li>0x17 {@link KJUR.asn1.DERUTCTime}</li> * <li>0x18 {@link KJUR.asn1.DERGeneralizedTime}</li> * <li>0x30 {@link KJUR.asn1.DERSequence}</li> * <li>0x31 {@link KJUR.asn1.DERSet}</li> * </ul> * <h4>OTHER ASN.1 CLASSES</h4> * <ul> * <li>{@link KJUR.asn1.ASN1Object}</li> * <li>{@link KJUR.asn1.DERAbstractString}</li> * <li>{@link KJUR.asn1.DERAbstractTime}</li> * <li>{@link KJUR.asn1.DERAbstractStructured}</li> * <li>{@link KJUR.asn1.DERTaggedObject}</li> * </ul> * <h4>SUB NAME SPACES</h4> * <ul> * <li>{@link KJUR.asn1.cades} - CAdES long term signature format</li> * <li>{@link KJUR.asn1.cms} - Cryptographic Message Syntax</li> * <li>{@link KJUR.asn1.csr} - Certificate Signing Request (CSR/PKCS#10)</li> * <li>{@link KJUR.asn1.tsp} - RFC 3161 Timestamping Protocol Format</li> * <li>{@link KJUR.asn1.x509} - RFC 5280 X.509 certificate and CRL</li> * </ul> * </p> * NOTE: Please ignore method summary and document of this namespace. * This caused by a bug of jsdoc2. * @name KJUR.asn1 * @namespace */ if (typeof KJUR.asn1 == "undefined" || !KJUR.asn1) KJUR.asn1 = {}; /** * ASN1 utilities class * @name KJUR.asn1.ASN1Util * @class ASN1 utilities class * @since asn1 1.0.2 */ KJUR.asn1.ASN1Util = new function() { this.integerToByteHex = function(i) { var h = i.toString(16); if ((h.length % 2) == 1) h = ‘0‘ + h; return h; }; this.bigIntToMinTwosComplementsHex = function(bigIntegerValue) { var h = bigIntegerValue.toString(16); if (h.substr(0, 1) != ‘-‘) { if (h.length % 2 == 1) { h = ‘0‘ + h; } else { if (! h.match(/^[0-7]/)) { h = ‘00‘ + h; } } } else { var hPos = h.substr(1); var xorLen = hPos.length; if (xorLen % 2 == 1) { xorLen += 1; } else { if (! h.match(/^[0-7]/)) { xorLen += 2; } } var hMask = ‘‘; for (var i = 0; i < xorLen; i++) { hMask += ‘f‘; } var biMask = new BigInteger(hMask, 16); var biNeg = biMask.xor(bigIntegerValue).add(BigInteger.ONE); h = biNeg.toString(16).replace(/^-/, ‘‘); } return h; }; /** * get PEM string from hexadecimal data and header string * @name getPEMStringFromHex * @memberOf KJUR.asn1.ASN1Util * @function * @param {String} dataHex hexadecimal string of PEM body * @param {String} pemHeader PEM header string (ex. ‘RSA PRIVATE KEY‘) * @return {String} PEM formatted string of input data * @description * This method converts a hexadecimal string to a PEM string with * a specified header. Its line break will be CRLF(" "). * @example * var pem = KJUR.asn1.ASN1Util.getPEMStringFromHex(‘616161‘, ‘RSA PRIVATE KEY‘); * // value of pem will be: * -----BEGIN PRIVATE KEY----- * YWFh * -----END PRIVATE KEY----- */ this.getPEMStringFromHex = function(dataHex, pemHeader) { return hextopem(dataHex, pemHeader); }; /** * generate ASN1Object specifed by JSON parameters * @name newObject * @memberOf KJUR.asn1.ASN1Util * @function * @param {Array} param JSON parameter to generate ASN1Object * @return {KJUR.asn1.ASN1Object} generated object * @since asn1 1.0.3 * @description * generate any ASN1Object specified by JSON param * including ASN.1 primitive or structured. * Generally ‘param‘ can be described as follows: * <blockquote> * {TYPE-OF-ASNOBJ: ASN1OBJ-PARAMETER} * </blockquote> * ‘TYPE-OF-ASN1OBJ‘ can be one of following symbols: * <ul> * <li>‘bool‘ - DERBoolean</li> * <li>‘int‘ - DERInteger</li> * <li>‘bitstr‘ - DERBitString</li> * <li>‘octstr‘ - DEROctetString</li> * <li>‘null‘ - DERNull</li> * <li>‘oid‘ - DERObjectIdentifier</li> * <li>‘enum‘ - DEREnumerated</li> * <li>‘utf8str‘ - DERUTF8String</li> * <li>‘numstr‘ - DERNumericString</li> * <li>‘prnstr‘ - DERPrintableString</li> * <li>‘telstr‘ - DERTeletexString</li> * <li>‘ia5str‘ - DERIA5String</li> * <li>‘utctime‘ - DERUTCTime</li> * <li>‘gentime‘ - DERGeneralizedTime</li> * <li>‘seq‘ - DERSequence</li> * <li>‘set‘ - DERSet</li> * <li>‘tag‘ - DERTaggedObject</li> * </ul> * @example * newObject({‘prnstr‘: ‘aaa‘}); * newObject({‘seq‘: [{‘int‘: 3}, {‘prnstr‘: ‘aaa‘}]}) * // ASN.1 Tagged Object * newObject({‘tag‘: {‘tag‘: ‘a1‘, * ‘explicit‘: true, * ‘obj‘: {‘seq‘: [{‘int‘: 3}, {‘prnstr‘: ‘aaa‘}]}}}); * // more simple representation of ASN.1 Tagged Object * newObject({‘tag‘: [‘a1‘, * true, * {‘seq‘: [ * {‘int‘: 3}, * {‘prnstr‘: ‘aaa‘}]} * ]}); */ this.newObject = function(param) { var _KJUR = KJUR, _KJUR_asn1 = _KJUR.asn1, _DERBoolean = _KJUR_asn1.DERBoolean, _DERInteger = _KJUR_asn1.DERInteger, _DERBitString = _KJUR_asn1.DERBitString, _DEROctetString = _KJUR_asn1.DEROctetString, _DERNull = _KJUR_asn1.DERNull, _DERObjectIdentifier = _KJUR_asn1.DERObjectIdentifier, _DEREnumerated = _KJUR_asn1.DEREnumerated, _DERUTF8String = _KJUR_asn1.DERUTF8String, _DERNumericString = _KJUR_asn1.DERNumericString, _DERPrintableString = _KJUR_asn1.DERPrintableString, _DERTeletexString = _KJUR_asn1.DERTeletexString, _DERIA5String = _KJUR_asn1.DERIA5String, _DERUTCTime = _KJUR_asn1.DERUTCTime, _DERGeneralizedTime = _KJUR_asn1.DERGeneralizedTime, _DERSequence = _KJUR_asn1.DERSequence, _DERSet = _KJUR_asn1.DERSet, _DERTaggedObject = _KJUR_asn1.DERTaggedObject, _newObject = _KJUR_asn1.ASN1Util.newObject; var keys = Object.keys(param); if (keys.length != 1) throw "key of param shall be only one."; var key = keys[0]; if (":bool:int:bitstr:octstr:null:oid:enum:utf8str:numstr:prnstr:telstr:ia5str:utctime:gentime:seq:set:tag:".indexOf(":" + key + ":") == -1) throw "undefined key: " + key; if (key == "bool") return new _DERBoolean(param[key]); if (key == "int") return new _DERInteger(param[key]); if (key == "bitstr") return new _DERBitString(param[key]); if (key == "octstr") return new _DEROctetString(param[key]); if (key == "null") return new _DERNull(param[key]); if (key == "oid") return new _DERObjectIdentifier(param[key]); if (key == "enum") return new _DEREnumerated(param[key]); if (key == "utf8str") return new _DERUTF8String(param[key]); if (key == "numstr") return new _DERNumericString(param[key]); if (key == "prnstr") return new _DERPrintableString(param[key]); if (key == "telstr") return new _DERTeletexString(param[key]); if (key == "ia5str") return new _DERIA5String(param[key]); if (key == "utctime") return new _DERUTCTime(param[key]); if (key == "gentime") return new _DERGeneralizedTime(param[key]); if (key == "seq") { var paramList = param[key]; var a = []; for (var i = 0; i < paramList.length; i++) { var asn1Obj = _newObject(paramList[i]); a.push(asn1Obj); } return new _DERSequence({‘array‘: a}); } if (key == "set") { var paramList = param[key]; var a = []; for (var i = 0; i < paramList.length; i++) { var asn1Obj = _newObject(paramList[i]); a.push(asn1Obj); } return new _DERSet({‘array‘: a}); } if (key == "tag") { var tagParam = param[key]; if (Object.prototype.toString.call(tagParam) === ‘[object Array]‘ && tagParam.length == 3) { var obj = _newObject(tagParam[2]); return new _DERTaggedObject({tag: tagParam[0], explicit: tagParam[1], obj: obj}); } else { var newParam = {}; if (tagParam.explicit !== undefined) newParam.explicit = tagParam.explicit; if (tagParam.tag !== undefined) newParam.tag = tagParam.tag; if (tagParam.obj === undefined) throw "obj shall be specified for ‘tag‘."; newParam.obj = _newObject(tagParam.obj); return new _DERTaggedObject(newParam); } } }; /** * get encoded hexadecimal string of ASN1Object specifed by JSON parameters * @name jsonToASN1HEX * @memberOf KJUR.asn1.ASN1Util * @function * @param {Array} param JSON parameter to generate ASN1Object * @return hexadecimal string of ASN1Object * @since asn1 1.0.4 * @description * As for ASN.1 object representation of JSON object, * please see {@link newObject}. * @example * jsonToASN1HEX({‘prnstr‘: ‘aaa‘}); */ this.jsonToASN1HEX = function(param) { var asn1Obj = this.newObject(param); return asn1Obj.getEncodedHex(); }; }; /** * get dot noted oid number string from hexadecimal value of OID * @name oidHexToInt * @memberOf KJUR.asn1.ASN1Util * @function * @param {String} hex hexadecimal value of object identifier * @return {String} dot noted string of object identifier * @since jsrsasign 4.8.3 asn1 1.0.7 * @description * This static method converts from hexadecimal string representation of * ASN.1 value of object identifier to oid number string. * @example * KJUR.asn1.ASN1Util.oidHexToInt(‘550406‘) → "2.5.4.6" */ KJUR.asn1.ASN1Util.oidHexToInt = function(hex) { var s = ""; var i01 = parseInt(hex.substr(0, 2), 16); var i0 = Math.floor(i01 / 40); var i1 = i01 % 40; var s = i0 + "." + i1; var binbuf = ""; for (var i = 2; i < hex.length; i += 2) { var value = parseInt(hex.substr(i, 2), 16); var bin = ("00000000" + value.toString(2)).slice(- 8); binbuf = binbuf + bin.substr(1, 7); if (bin.substr(0, 1) == "0") { var bi = new BigInteger(binbuf, 2); s = s + "." + bi.toString(10); binbuf = ""; } } return s; }; /** * get hexadecimal value of object identifier from dot noted oid value * @name oidIntToHex * @memberOf KJUR.asn1.ASN1Util * @function * @param {String} oidString dot noted string of object identifier * @return {String} hexadecimal value of object identifier * @since jsrsasign 4.8.3 asn1 1.0.7 * @description * This static method converts from object identifier value string. * to hexadecimal string representation of it. * @example * KJUR.asn1.ASN1Util.oidIntToHex("2.5.4.6") → "550406" */ KJUR.asn1.ASN1Util.oidIntToHex = function(oidString) { var itox = function(i) { var h = i.toString(16); if (h.length == 1) h = ‘0‘ + h; return h; }; var roidtox = function(roid) { var h = ‘‘; var bi = new BigInteger(roid, 10); var b = bi.toString(2); var padLen = 7 - b.length % 7; if (padLen == 7) padLen = 0; var bPad = ‘‘; for (var i = 0; i < padLen; i++) bPad += ‘0‘; b = bPad + b; for (var i = 0; i < b.length - 1; i += 7) { var b8 = b.substr(i, 7); if (i != b.length - 7) b8 = ‘1‘ + b8; h += itox(parseInt(b8, 2)); } return h; }; if (! oidString.match(/^[0-9.]+$/)) { throw "malformed oid string: " + oidString; } var h = ‘‘; var a = oidString.split(‘.‘); var i0 = parseInt(a[0]) * 40 + parseInt(a[1]); h += itox(i0); a.splice(0, 2); for (var i = 0; i < a.length; i++) { h += roidtox(a[i]); } return h; }; // ******************************************************************** // Abstract ASN.1 Classes // ******************************************************************** // ******************************************************************** /** * base class for ASN.1 DER encoder object * @name KJUR.asn1.ASN1Object * @class base class for ASN.1 DER encoder object * @property {Boolean} isModified flag whether internal data was changed * @property {String} hTLV hexadecimal string of ASN.1 TLV * @property {String} hT hexadecimal string of ASN.1 TLV tag(T) * @property {String} hL hexadecimal string of ASN.1 TLV length(L) * @property {String} hV hexadecimal string of ASN.1 TLV value(V) * @description */ KJUR.asn1.ASN1Object = function() { var hV = ‘‘; /** * get hexadecimal ASN.1 TLV length(L) bytes from TLV value(V) * @name getLengthHexFromValue * @memberOf KJUR.asn1.ASN1Object# * @function * @return {String} hexadecimal string of ASN.1 TLV length(L) */ this.getLengthHexFromValue = function() { if (typeof this.hV == "undefined" || this.hV == null) { throw "this.hV is null or undefined."; } if (this.hV.length % 2 == 1) { throw "value hex must be even length: n=" + hV.length + ",v=" + this.hV; } var n = this.hV.length / 2; var hN = n.toString(16); if (hN.length % 2 == 1) { hN = "0" + hN; } if (n < 128) { return hN; } else { var hNlen = hN.length / 2; if (hNlen > 15) { throw "ASN.1 length too long to represent by 8x: n = " + n.toString(16); } var head = 128 + hNlen; return head.toString(16) + hN; } }; /** * get hexadecimal string of ASN.1 TLV bytes * @name getEncodedHex * @memberOf KJUR.asn1.ASN1Object# * @function * @return {String} hexadecimal string of ASN.1 TLV */ this.getEncodedHex = function() { if (this.hTLV == null || this.isModified) { this.hV = this.getFreshValueHex(); this.hL = this.getLengthHexFromValue(); this.hTLV = this.hT + this.hL + this.hV; this.isModified = false; //alert("first time: " + this.hTLV); } return this.hTLV; }; /** * get hexadecimal string of ASN.1 TLV value(V) bytes * @name getValueHex * @memberOf KJUR.asn1.ASN1Object# * @function * @return {String} hexadecimal string of ASN.1 TLV value(V) bytes */ this.getValueHex = function() { this.getEncodedHex(); return this.hV; }; this.getFreshValueHex = function() { return ‘‘; }; }; // == BEGIN DERAbstractString ================================================ /** * base class for ASN.1 DER string classes * @name KJUR.asn1.DERAbstractString * @class base class for ASN.1 DER string classes * @param {Array} params associative array of parameters (ex. {‘str‘: ‘aaa‘}) * @property {String} s internal string of value * @extends KJUR.asn1.ASN1Object * @description * <br/> * As for argument ‘params‘ for constructor, you can specify one of * following properties: * <ul> * <li>str - specify initial ASN.1 value(V) by a string</li> * <li>hex - specify initial ASN.1 value(V) by a hexadecimal string</li> * </ul> * NOTE: ‘params‘ can be omitted. */ KJUR.asn1.DERAbstractString = function(params) { KJUR.asn1.DERAbstractString.superclass.constructor.call(this); /** * get string value of this string object * @name getString * @memberOf KJUR.asn1.DERAbstractString# * @function * @return {String} string value of this string object */ this.getString = function() { return this.s; }; /** * set value by a string * @name setString * @memberOf KJUR.asn1.DERAbstractString# * @function * @param {String} newS value by a string to set */ this.setString = function(newS) { this.hTLV = null; this.isModified = true; this.s = newS; this.hV = stohex(this.s); }; /** * set value by a hexadecimal string * @name setStringHex * @memberOf KJUR.asn1.DERAbstractString# * @function * @param {String} newHexString value by a hexadecimal string to set */ this.setStringHex = function(newHexString) { this.hTLV = null; this.isModified = true; this.s = null; this.hV = newHexString; }; this.getFreshValueHex = function() { return this.hV; }; if (typeof params != "undefined") { if (typeof params == "string") { this.setString(params); } else if (typeof params[‘str‘] != "undefined") { this.setString(params[‘str‘]); } else if (typeof params[‘hex‘] != "undefined") { this.setStringHex(params[‘hex‘]); } } }; YAHOO.lang.extend(KJUR.asn1.DERAbstractString, KJUR.asn1.ASN1Object); // == END DERAbstractString ================================================ // == BEGIN DERAbstractTime ================================================== /** * base class for ASN.1 DER Generalized/UTCTime class * @name KJUR.asn1.DERAbstractTime * @class base class for ASN.1 DER Generalized/UTCTime class * @param {Array} params associative array of parameters (ex. {‘str‘: ‘130430235959Z‘}) * @extends KJUR.asn1.ASN1Object * @description * @see KJUR.asn1.ASN1Object - superclass */ KJUR.asn1.DERAbstractTime = function(params) { KJUR.asn1.DERAbstractTime.superclass.constructor.call(this); // --- PRIVATE METHODS -------------------- this.localDateToUTC = function(d) { utc = d.getTime() + (d.getTimezoneOffset() * 60000); var utcDate = new Date(utc); return utcDate; }; /* * format date string by Data object * @name formatDate * @memberOf KJUR.asn1.AbstractTime; * @param {Date} dateObject * @param {string} type ‘utc‘ or ‘gen‘ * @param {boolean} withMillis flag for with millisections or not * @description * ‘withMillis‘ flag is supported from asn1 1.0.6. */ this.formatDate = function(dateObject, type, withMillis) { var pad = this.zeroPadding; var d = this.localDateToUTC(dateObject); var year = String(d.getFullYear()); if (type == ‘utc‘) year = year.substr(2, 2); var month = pad(String(d.getMonth() + 1), 2); var day = pad(String(d.getDate()), 2); var hour = pad(String(d.getHours()), 2); var min = pad(String(d.getMinutes()), 2); var sec = pad(String(d.getSeconds()), 2); var s = year + month + day + hour + min + sec; if (withMillis === true) { var millis = d.getMilliseconds(); if (millis != 0) { var sMillis = pad(String(millis), 3); sMillis = sMillis.replace(/[0]+$/, ""); s = s + "." + sMillis; } } return s + "Z"; }; this.zeroPadding = function(s, len) { if (s.length >= len) return s; return new Array(len - s.length + 1).join(‘0‘) + s; }; // --- PUBLIC METHODS -------------------- /** * get string value of this string object * @name getString * @memberOf KJUR.asn1.DERAbstractTime# * @function * @return {String} string value of this time object */ this.getString = function() { return this.s; }; /** * set value by a string * @name setString * @memberOf KJUR.asn1.DERAbstractTime# * @function * @param {String} newS value by a string to set such like "130430235959Z" */ this.setString = function(newS) { this.hTLV = null; this.isModified = true; this.s = newS; this.hV = stohex(newS); }; /** * set value by a Date object * @name setByDateValue * @memberOf KJUR.asn1.DERAbstractTime# * @function * @param {Integer} year year of date (ex. 2013) * @param {Integer} month month of date between 1 and 12 (ex. 12) * @param {Integer} day day of month * @param {Integer} hour hours of date * @param {Integer} min minutes of date * @param {Integer} sec seconds of date */ this.setByDateValue = function(year, month, day, hour, min, sec) { var dateObject = new Date(Date.UTC(year, month - 1, day, hour, min, sec, 0)); this.setByDate(dateObject); }; this.getFreshValueHex = function() { return this.hV; }; }; YAHOO.lang.extend(KJUR.asn1.DERAbstractTime, KJUR.asn1.ASN1Object); // == END DERAbstractTime ================================================== // == BEGIN DERAbstractStructured ============================================ /** * base class for ASN.1 DER structured class * @name KJUR.asn1.DERAbstractStructured * @class base class for ASN.1 DER structured class * @property {Array} asn1Array internal array of ASN1Object * @extends KJUR.asn1.ASN1Object * @description * @see KJUR.asn1.ASN1Object - superclass */ KJUR.asn1.DERAbstractStructured = function(params) { KJUR.asn1.DERAbstractString.superclass.constructor.call(this); /** * set value by array of ASN1Object * @name setByASN1ObjectArray * @memberOf KJUR.asn1.DERAbstractStructured# * @function * @param {array} asn1ObjectArray array of ASN1Object to set */ this.setByASN1ObjectArray = function(asn1ObjectArray) { this.hTLV = null; this.isModified = true; this.asn1Array = asn1ObjectArray; }; /** * append an ASN1Object to internal array * @name appendASN1Object * @memberOf KJUR.asn1.DERAbstractStructured# * @function * @param {ASN1Object} asn1Object to add */ this.appendASN1Object = function(asn1Object) { this.hTLV = null; this.isModified = true; this.asn1Array.push(asn1Object); }; this.asn1Array = new Array(); if (typeof params != "undefined") { if (typeof params[‘array‘] != "undefined") { this.asn1Array = params[‘array‘]; } } }; YAHOO.lang.extend(KJUR.asn1.DERAbstractStructured, KJUR.asn1.ASN1Object); // ******************************************************************** // ASN.1 Object Classes // ******************************************************************** // ******************************************************************** /** * class for ASN.1 DER Boolean * @name KJUR.asn1.DERBoolean * @class class for ASN.1 DER Boolean * @extends KJUR.asn1.ASN1Object * @description * @see KJUR.asn1.ASN1Object - superclass */ KJUR.asn1.DERBoolean = function() { KJUR.asn1.DERBoolean.superclass.constructor.call(this); this.hT = "01"; this.hTLV = "0101ff"; }; YAHOO.lang.extend(KJUR.asn1.DERBoolean, KJUR.asn1.ASN1Object); // ******************************************************************** /** * class for ASN.1 DER Integer * @name KJUR.asn1.DERInteger * @class class for ASN.1 DER Integer * @extends KJUR.asn1.ASN1Object * @description * <br/> * As for argument ‘params‘ for constructor, you can specify one of * following properties: * <ul> * <li>int - specify initial ASN.1 value(V) by integer value</li> * <li>bigint - specify initial ASN.1 value(V) by BigInteger object</li> * <li>hex - specify initial ASN.1 value(V) by a hexadecimal string</li> * </ul> * NOTE: ‘params‘ can be omitted. */ KJUR.asn1.DERInteger = function(params) { KJUR.asn1.DERInteger.superclass.constructor.call(this); this.hT = "02"; /** * set value by Tom Wu‘s BigInteger object * @name setByBigInteger * @memberOf KJUR.asn1.DERInteger# * @function * @param {BigInteger} bigIntegerValue to set */ this.setByBigInteger = function(bigIntegerValue) { this.hTLV = null; this.isModified = true; this.hV = KJUR.asn1.ASN1Util.bigIntToMinTwosComplementsHex(bigIntegerValue); }; /** * set value by integer value * @name setByInteger * @memberOf KJUR.asn1.DERInteger * @function * @param {Integer} integer value to set */ this.setByInteger = function(intValue) { var bi = new BigInteger(String(intValue), 10); this.setByBigInteger(bi); }; /** * set value by integer value * @name setValueHex * @memberOf KJUR.asn1.DERInteger# * @function * @param {String} hexadecimal string of integer value * @description * <br/> * NOTE: Value shall be represented by minimum octet length of * two‘s complement representation. * @example * new KJUR.asn1.DERInteger(123); * new KJUR.asn1.DERInteger({‘int‘: 123}); * new KJUR.asn1.DERInteger({‘hex‘: ‘1fad‘}); */ this.setValueHex = function(newHexString) { this.hV = newHexString; }; this.getFreshValueHex = function() { return this.hV; }; if (typeof params != "undefined") { if (typeof params[‘bigint‘] != "undefined") { this.setByBigInteger(params[‘bigint‘]); } else if (typeof params[‘int‘] != "undefined") { this.setByInteger(params[‘int‘]); } else if (typeof params == "number") { this.setByInteger(params); } else if (typeof params[‘hex‘] != "undefined") { this.setValueHex(params[‘hex‘]); } } }; YAHOO.lang.extend(KJUR.asn1.DERInteger, KJUR.asn1.ASN1Object); // ******************************************************************** /** * class for ASN.1 DER encoded BitString primitive * @name KJUR.asn1.DERBitString * @class class for ASN.1 DER encoded BitString primitive * @extends KJUR.asn1.ASN1Object * @description * <br/> * As for argument ‘params‘ for constructor, you can specify one of * following properties: * <ul> * <li>bin - specify binary string (ex. ‘10111‘)</li> * <li>array - specify array of boolean (ex. [true,false,true,true])</li> * <li>hex - specify hexadecimal string of ASN.1 value(V) including unused bits</li> * <li>obj - specify {@link KJUR.asn1.ASN1Util.newObject} * argument for "BitString encapsulates" structure.</li> * </ul> * NOTE1: ‘params‘ can be omitted.<br/> * NOTE2: ‘obj‘ parameter have been supported since * asn1 1.0.11, jsrsasign 6.1.1 (2016-Sep-25).<br/> * @example * // default constructor * o = new KJUR.asn1.DERBitString(); * // initialize with binary string * o = new KJUR.asn1.DERBitString({bin: "1011"}); * // initialize with boolean array * o = new KJUR.asn1.DERBitString({array: [true,false,true,true]}); * // initialize with hexadecimal string (04 is unused bits) * o = new KJUR.asn1.DEROctetString({hex: "04bac0"}); * // initialize with ASN1Util.newObject argument for encapsulated * o = new KJUR.asn1.DERBitString({obj: {seq: [{int: 3}, {prnstr: ‘aaa‘}]}}); * // above generates a ASN.1 data like this: * // BIT STRING, encapsulates { * // SEQUENCE { * // INTEGER 3 * // PrintableString ‘aaa‘ * // } * // } */ KJUR.asn1.DERBitString = function(params) { if (params !== undefined && typeof params.obj !== "undefined") { var o = KJUR.asn1.ASN1Util.newObject(params.obj); params.hex = "00" + o.getEncodedHex(); } KJUR.asn1.DERBitString.superclass.constructor.call(this); this.hT = "03"; /** * set ASN.1 value(V) by a hexadecimal string including unused bits * @name setHexValueIncludingUnusedBits * @memberOf KJUR.asn1.DERBitString# * @function * @param {String} newHexStringIncludingUnusedBits */ this.setHexValueIncludingUnusedBits = function(newHexStringIncludingUnusedBits) { this.hTLV = null; this.isModified = true; this.hV = newHexStringIncludingUnusedBits; }; /** * set ASN.1 value(V) by unused bit and hexadecimal string of value * @name setUnusedBitsAndHexValue * @memberOf KJUR.asn1.DERBitString# * @function * @param {Integer} unusedBits * @param {String} hValue */ this.setUnusedBitsAndHexValue = function(unusedBits, hValue) { if (unusedBits < 0 || 7 < unusedBits) { throw "unused bits shall be from 0 to 7: u = " + unusedBits; } var hUnusedBits = "0" + unusedBits; this.hTLV = null; this.isModified = true; this.hV = hUnusedBits + hValue; }; /** * set ASN.1 DER BitString by binary string<br/> * @name setByBinaryString * @memberOf KJUR.asn1.DERBitString# * @function * @param {String} binaryString binary value string (i.e. ‘10111‘) * @description * Its unused bits will be calculated automatically by length of * ‘binaryValue‘. <br/> * NOTE: Trailing zeros ‘0‘ will be ignored. * @example * o = new KJUR.asn1.DERBitString(); * o.setByBooleanArray("01011"); */ this.setByBinaryString = function(binaryString) { binaryString = binaryString.replace(/0+$/, ‘‘); var unusedBits = 8 - binaryString.length % 8; if (unusedBits == 8) unusedBits = 0; for (var i = 0; i <= unusedBits; i++) { binaryString += ‘0‘; } var h = ‘‘; for (var i = 0; i < binaryString.length - 1; i += 8) { var b = binaryString.substr(i, 8); var x = parseInt(b, 2).toString(16); if (x.length == 1) x = ‘0‘ + x; h += x; } this.hTLV = null; this.isModified = true; this.hV = ‘0‘ + unusedBits + h; }; /** * set ASN.1 TLV value(V) by an array of boolean<br/> * @name setByBooleanArray * @memberOf KJUR.asn1.DERBitString# * @function * @param {array} booleanArray array of boolean (ex. [true, false, true]) * @description * NOTE: Trailing falses will be ignored in the ASN.1 DER Object. * @example * o = new KJUR.asn1.DERBitString(); * o.setByBooleanArray([false, true, false, true, true]); */ this.setByBooleanArray = function(booleanArray) { var s = ‘‘; for (var i = 0; i < booleanArray.length; i++) { if (booleanArray[i] == true) { s += ‘1‘; } else { s += ‘0‘; } } this.setByBinaryString(s); }; /** * generate an array of falses with specified length<br/> * @name newFalseArray * @memberOf KJUR.asn1.DERBitString * @function * @param {Integer} nLength length of array to generate * @return {array} array of boolean falses * @description * This static method may be useful to initialize boolean array. * @example * o = new KJUR.asn1.DERBitString(); * o.newFalseArray(3) → [false, false, false] */ this.newFalseArray = function(nLength) { var a = new Array(nLength); for (var i = 0; i < nLength; i++) { a[i] = false; } return a; }; this.getFreshValueHex = function() { return this.hV; }; if (typeof params != "undefined") { if (typeof params == "string" && params.toLowerCase().match(/^[0-9a-f]+$/)) { this.setHexValueIncludingUnusedBits(params); } else if (typeof params[‘hex‘] != "undefined") { this.setHexValueIncludingUnusedBits(params[‘hex‘]); } else if (typeof params[‘bin‘] != "undefined") { this.setByBinaryString(params[‘bin‘]); } else if (typeof params[‘array‘] != "undefined") { this.setByBooleanArray(params[‘array‘]); } } }; YAHOO.lang.extend(KJUR.asn1.DERBitString, KJUR.asn1.ASN1Object); // ******************************************************************** /** * class for ASN.1 DER OctetString<br/> * @name KJUR.asn1.DEROctetString * @class class for ASN.1 DER OctetString * @param {Array} params associative array of parameters (ex. {‘str‘: ‘aaa‘}) * @extends KJUR.asn1.DERAbstractString * @description * This class provides ASN.1 OctetString simple type.<br/> * Supported "params" attributes are: * <ul> * <li>str - to set a string as a value</li> * <li>hex - to set a hexadecimal string as a value</li> * <li>obj - to set a encapsulated ASN.1 value by JSON object * which is defined in {@link KJUR.asn1.ASN1Util.newObject}</li> * </ul> * NOTE: A parameter ‘obj‘ have been supported * for "OCTET STRING, encapsulates" structure. * since asn1 1.0.11, jsrsasign 6.1.1 (2016-Sep-25). * @see KJUR.asn1.DERAbstractString - superclass * @example * // default constructor * o = new KJUR.asn1.DEROctetString(); * // initialize with string * o = new KJUR.asn1.DEROctetString({str: "aaa"}); * // initialize with hexadecimal string * o = new KJUR.asn1.DEROctetString({hex: "616161"}); * // initialize with ASN1Util.newObject argument * o = new KJUR.asn1.DEROctetString({obj: {seq: [{int: 3}, {prnstr: ‘aaa‘}]}}); * // above generates a ASN.1 data like this: * // OCTET STRING, encapsulates { * // SEQUENCE { * // INTEGER 3 * // PrintableString ‘aaa‘ * // } * // } */ KJUR.asn1.DEROctetString = function(params) { if (params !== undefined && typeof params.obj !== "undefined") { var o = KJUR.asn1.ASN1Util.newObject(params.obj); params.hex = o.getEncodedHex(); } KJUR.asn1.DEROctetString.superclass.constructor.call(this, params); this.hT = "04"; }; YAHOO.lang.extend(KJUR.asn1.DEROctetString, KJUR.asn1.DERAbstractString); // ******************************************************************** /** * class for ASN.1 DER Null * @name KJUR.asn1.DERNull * @class class for ASN.1 DER Null * @extends KJUR.asn1.ASN1Object * @description * @see KJUR.asn1.ASN1Object - superclass */ KJUR.asn1.DERNull = function() { KJUR.asn1.DERNull.superclass.constructor.call(this); this.hT = "05"; this.hTLV = "0500"; }; YAHOO.lang.extend(KJUR.asn1.DERNull, KJUR.asn1.ASN1Object); // ******************************************************************** /** * class for ASN.1 DER ObjectIdentifier * @name KJUR.asn1.DERObjectIdentifier * @class class for ASN.1 DER ObjectIdentifier * @param {Array} params associative array of parameters (ex. {‘oid‘: ‘2.5.4.5‘}) * @extends KJUR.asn1.ASN1Object * @description * <br/> * As for argument ‘params‘ for constructor, you can specify one of * following properties: * <ul> * <li>oid - specify initial ASN.1 value(V) by a oid string (ex. 2.5.4.13)</li> * <li>hex - specify initial ASN.1 value(V) by a hexadecimal string</li> * </ul> * NOTE: ‘params‘ can be omitted. */ KJUR.asn1.DERObjectIdentifier = function(params) { var itox = function(i) { var h = i.toString(16); if (h.length == 1) h = ‘0‘ + h; return h; }; var roidtox = function(roid) { var h = ‘‘; var bi = new BigInteger(roid, 10); var b = bi.toString(2); var padLen = 7 - b.length % 7; if (padLen == 7) padLen = 0; var bPad = ‘‘; for (var i = 0; i < padLen; i++) bPad += ‘0‘; b = bPad + b; for (var i = 0; i < b.length - 1; i += 7) { var b8 = b.substr(i, 7); if (i != b.length - 7) b8 = ‘1‘ + b8; h += itox(parseInt(b8, 2)); } return h; }; KJUR.asn1.DERObjectIdentifier.superclass.constructor.call(this); this.hT = "06"; /** * set value by a hexadecimal string * @name setValueHex * @memberOf KJUR.asn1.DERObjectIdentifier# * @function * @param {String} newHexString hexadecimal value of OID bytes */ this.setValueHex = function(newHexString) { this.hTLV = null; this.isModified = true; this.s = null; this.hV = newHexString; }; /** * set value by a OID string<br/> * @name setValueOidString * @memberOf KJUR.asn1.DERObjectIdentifier# * @function * @param {String} oidString OID string (ex. 2.5.4.13) * @example * o = new KJUR.asn1.DERObjectIdentifier(); * o.setValueOidString("2.5.4.13"); */ this.setValueOidString = function(oidString) { if (! oidString.match(/^[0-9.]+$/)) { throw "malformed oid string: " + oidString; } var h = ‘‘; var a = oidString.split(‘.‘); var i0 = parseInt(a[0]) * 40 + parseInt(a[1]); h += itox(i0); a.splice(0, 2); for (var i = 0; i < a.length; i++) { h += roidtox(a[i]); } this.hTLV = null; this.isModified = true; this.s = null; this.hV = h; }; /** * set value by a OID name * @name setValueName * @memberOf KJUR.asn1.DERObjectIdentifier# * @function * @param {String} oidName OID name (ex. ‘serverAuth‘) * @since 1.0.1 * @description * OID name shall be defined in ‘KJUR.asn1.x509.OID.name2oidList‘. * Otherwise raise error. * @example * o = new KJUR.asn1.DERObjectIdentifier(); * o.setValueName("serverAuth"); */ this.setValueName = function(oidName) { var oid = KJUR.asn1.x509.OID.name2oid(oidName); if (oid !== ‘‘) { this.setValueOidString(oid); } else { throw "DERObjectIdentifier oidName undefined: " + oidName; } }; this.getFreshValueHex = function() { return this.hV; }; if (params !== undefined) { if (typeof params === "string") { if (params.match(/^[0-2].[0-9.]+$/)) { this.setValueOidString(params); } else { this.setValueName(params); } } else if (params.oid !== undefined) { this.setValueOidString(params.oid); } else if (params.hex !== undefined) { this.setValueHex(params.hex); } else if (params.name !== undefined) { this.setValueName(params.name); } } }; YAHOO.lang.extend(KJUR.asn1.DERObjectIdentifier, KJUR.asn1.ASN1Object); // ******************************************************************** /** * class for ASN.1 DER Enumerated * @name KJUR.asn1.DEREnumerated * @class class for ASN.1 DER Enumerated * @extends KJUR.asn1.ASN1Object * @description * <br/> * As for argument ‘params‘ for constructor, you can specify one of * following properties: * <ul> * <li>int - specify initial ASN.1 value(V) by integer value</li> * <li>hex - specify initial ASN.1 value(V) by a hexadecimal string</li> * </ul> * NOTE: ‘params‘ can be omitted. * @example * new KJUR.asn1.DEREnumerated(123); * new KJUR.asn1.DEREnumerated({int: 123}); * new KJUR.asn1.DEREnumerated({hex: ‘1fad‘}); */ KJUR.asn1.DEREnumerated = function(params) { KJUR.asn1.DEREnumerated.superclass.constructor.call(this); this.hT = "0a"; /** * set value by Tom Wu‘s BigInteger object * @name setByBigInteger * @memberOf KJUR.asn1.DEREnumerated# * @function * @param {BigInteger} bigIntegerValue to set */ this.setByBigInteger = function(bigIntegerValue) { this.hTLV = null; this.isModified = true; this.hV = KJUR.asn1.ASN1Util.bigIntToMinTwosComplementsHex(bigIntegerValue); }; /** * set value by integer value * @name setByInteger * @memberOf KJUR.asn1.DEREnumerated# * @function * @param {Integer} integer value to set */ this.setByInteger = function(intValue) { var bi = new BigInteger(String(intValue), 10); this.setByBigInteger(bi); }; /** * set value by integer value * @name setValueHex * @memberOf KJUR.asn1.DEREnumerated# * @function * @param {String} hexadecimal string of integer value * @description * <br/> * NOTE: Value shall be represented by minimum octet length of * two‘s complement representation. */ this.setValueHex = function(newHexString) { this.hV = newHexString; }; this.getFreshValueHex = function() { return this.hV; }; if (typeof params != "undefined") { if (typeof params[‘int‘] != "undefined") { this.setByInteger(params[‘int‘]); } else if (typeof params == "number") { this.setByInteger(params); } else if (typeof params[‘hex‘] != "undefined") { this.setValueHex(params[‘hex‘]); } } }; YAHOO.lang.extend(KJUR.asn1.DEREnumerated, KJUR.asn1.ASN1Object); // ******************************************************************** /** * class for ASN.1 DER UTF8String * @name KJUR.asn1.DERUTF8String * @class class for ASN.1 DER UTF8String * @param {Array} params associative array of parameters (ex. {‘str‘: ‘aaa‘}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERUTF8String = function(params) { KJUR.asn1.DERUTF8String.superclass.constructor.call(this, params); this.hT = "0c"; }; YAHOO.lang.extend(KJUR.asn1.DERUTF8String, KJUR.asn1.DERAbstractString); // ******************************************************************** /** * class for ASN.1 DER NumericString * @name KJUR.asn1.DERNumericString * @class class for ASN.1 DER NumericString * @param {Array} params associative array of parameters (ex. {‘str‘: ‘aaa‘}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERNumericString = function(params) { KJUR.asn1.DERNumericString.superclass.constructor.call(this, params); this.hT = "12"; }; YAHOO.lang.extend(KJUR.asn1.DERNumericString, KJUR.asn1.DERAbstractString); // ******************************************************************** /** * class for ASN.1 DER PrintableString * @name KJUR.asn1.DERPrintableString * @class class for ASN.1 DER PrintableString * @param {Array} params associative array of parameters (ex. {‘str‘: ‘aaa‘}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERPrintableString = function(params) { KJUR.asn1.DERPrintableString.superclass.constructor.call(this, params); this.hT = "13"; }; YAHOO.lang.extend(KJUR.asn1.DERPrintableString, KJUR.asn1.DERAbstractString); // ******************************************************************** /** * class for ASN.1 DER TeletexString * @name KJUR.asn1.DERTeletexString * @class class for ASN.1 DER TeletexString * @param {Array} params associative array of parameters (ex. {‘str‘: ‘aaa‘}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERTeletexString = function(params) { KJUR.asn1.DERTeletexString.superclass.constructor.call(this, params); this.hT = "14"; }; YAHOO.lang.extend(KJUR.asn1.DERTeletexString, KJUR.asn1.DERAbstractString); // ******************************************************************** /** * class for ASN.1 DER IA5String * @name KJUR.asn1.DERIA5String * @class class for ASN.1 DER IA5String * @param {Array} params associative array of parameters (ex. {‘str‘: ‘aaa‘}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERIA5String = function(params) { KJUR.asn1.DERIA5String.superclass.constructor.call(this, params); this.hT = "16"; }; YAHOO.lang.extend(KJUR.asn1.DERIA5String, KJUR.asn1.DERAbstractString); // ******************************************************************** /** * class for ASN.1 DER UTCTime * @name KJUR.asn1.DERUTCTime * @class class for ASN.1 DER UTCTime * @param {Array} params associative array of parameters (ex. {‘str‘: ‘130430235959Z‘}) * @extends KJUR.asn1.DERAbstractTime * @description * <br/> * As for argument ‘params‘ for constructor, you can specify one of * following properties: * <ul> * <li>str - specify initial ASN.1 value(V) by a string (ex.‘130430235959Z‘)</li> * <li>hex - specify initial ASN.1 value(V) by a hexadecimal string</li> * <li>date - specify Date object.</li> * </ul> * NOTE: ‘params‘ can be omitted. * <h4>EXAMPLES</h4> * @example * d1 = new KJUR.asn1.DERUTCTime(); * d1.setString(‘130430125959Z‘); * * d2 = new KJUR.asn1.DERUTCTime({‘str‘: ‘130430125959Z‘}); * d3 = new KJUR.asn1.DERUTCTime({‘date‘: new Date(Date.UTC(2015, 0, 31, 0, 0, 0, 0))}); * d4 = new KJUR.asn1.DERUTCTime(‘130430125959Z‘); */ KJUR.asn1.DERUTCTime = function(params) { KJUR.asn1.DERUTCTime.superclass.constructor.call(this, params); this.hT = "17"; /** * set value by a Date object<br/> * @name setByDate * @memberOf KJUR.asn1.DERUTCTime# * @function * @param {Date} dateObject Date object to set ASN.1 value(V) * @example * o = new KJUR.asn1.DERUTCTime(); * o.setByDate(new Date("2016/12/31")); */ this.setByDate = function(dateObject) { this.hTLV = null; this.isModified = true; this.date = dateObject; this.s = this.formatDate(this.date, ‘utc‘); this.hV = stohex(this.s); }; this.getFreshValueHex = function() { if (typeof this.date == "undefined" && typeof this.s == "undefined") { this.date = new Date(); this.s = this.formatDate(this.date, ‘utc‘); this.hV = stohex(this.s); } return this.hV; }; if (params !== undefined) { if (params.str !== undefined) { this.setString(params.str); } else if (typeof params == "string" && params.match(/^[0-9]{12}Z$/)) { this.setString(params); } else if (params.hex !== undefined) { this.setStringHex(params.hex); } else if (params.date !== undefined) { this.setByDate(params.date); } } }; YAHOO.lang.extend(KJUR.asn1.DERUTCTime, KJUR.asn1.DERAbstractTime); // ******************************************************************** /** * class for ASN.1 DER GeneralizedTime * @name KJUR.asn1.DERGeneralizedTime * @class class for ASN.1 DER GeneralizedTime * @param {Array} params associative array of parameters (ex. {‘str‘: ‘20130430235959Z‘}) * @property {Boolean} withMillis flag to show milliseconds or not * @extends KJUR.asn1.DERAbstractTime * @description * <br/> * As for argument ‘params‘ for constructor, you can specify one of * following properties: * <ul> * <li>str - specify initial ASN.1 value(V) by a string (ex.‘20130430235959Z‘)</li> * <li>hex - specify initial ASN.1 value(V) by a hexadecimal string</li> * <li>date - specify Date object.</li> * <li>millis - specify flag to show milliseconds (from 1.0.6)</li> * </ul> * NOTE1: ‘params‘ can be omitted. * NOTE2: ‘withMillis‘ property is supported from asn1 1.0.6. */ KJUR.asn1.DERGeneralizedTime = function(params) { KJUR.asn1.DERGeneralizedTime.superclass.constructor.call(this, params); this.hT = "18"; this.withMillis = false; /** * set value by a Date object * @name setByDate * @memberOf KJUR.asn1.DERGeneralizedTime# * @function * @param {Date} dateObject Date object to set ASN.1 value(V) * @example * When you specify UTC time, use ‘Date.UTC‘ method like this:<br/> * o1 = new DERUTCTime(); * o1.setByDate(date); * * date = new Date(Date.UTC(2015, 0, 31, 23, 59, 59, 0)); #2015JAN31 23:59:59 */ this.setByDate = function(dateObject) { this.hTLV = null; this.isModified = true; this.date = dateObject; this.s = this.formatDate(this.date, ‘gen‘, this.withMillis); this.hV = stohex(this.s); }; this.getFreshValueHex = function() { if (this.date === undefined && this.s === undefined) { this.date = new Date(); this.s = this.formatDate(this.date, ‘gen‘, this.withMillis); this.hV = stohex(this.s); } return this.hV; }; if (params !== undefined) { if (params.str !== undefined) { this.setString(params.str); } else if (typeof params == "string" && params.match(/^[0-9]{14}Z$/)) { this.setString(params); } else if (params.hex !== undefined) { this.setStringHex(params.hex); } else if (params.date !== undefined) { this.setByDate(params.date); } if (params.millis === true) { this.withMillis = true; } } }; YAHOO.lang.extend(KJUR.asn1.DERGeneralizedTime, KJUR.asn1.DERAbstractTime); // ******************************************************************** /** * class for ASN.1 DER Sequence * @name KJUR.asn1.DERSequence * @class class for ASN.1 DER Sequence * @extends KJUR.asn1.DERAbstractStructured * @description * <br/> * As for argument ‘params‘ for constructor, you can specify one of * following properties: * <ul> * <li>array - specify array of ASN1Object to set elements of content</li> * </ul> * NOTE: ‘params‘ can be omitted. */ KJUR.asn1.DERSequence = function(params) { KJUR.asn1.DERSequence.superclass.constructor.call(this, params); this.hT = "30"; this.getFreshValueHex = function() { var h = ‘‘; for (var i = 0; i < this.asn1Array.length; i++) { var asn1Obj = this.asn1Array[i]; h += asn1Obj.getEncodedHex(); } this.hV = h; return this.hV; }; }; YAHOO.lang.extend(KJUR.asn1.DERSequence, KJUR.asn1.DERAbstractStructured); // ******************************************************************** /** * class for ASN.1 DER Set * @name KJUR.asn1.DERSet * @class class for ASN.1 DER Set * @extends KJUR.asn1.DERAbstractStructured * @description * <br/> * As for argument ‘params‘ for constructor, you can specify one of * following properties: * <ul> * <li>array - specify array of ASN1Object to set elements of content</li> * <li>sortflag - flag for sort (default: true). ASN.1 BER is not sorted in ‘SET OF‘.</li> * </ul> * NOTE1: ‘params‘ can be omitted.<br/> * NOTE2: sortflag is supported since 1.0.5. */ KJUR.asn1.DERSet = function(params) { KJUR.asn1.DERSet.superclass.constructor.call(this, params); this.hT = "31"; this.sortFlag = true; // item shall be sorted only in ASN.1 DER this.getFreshValueHex = function() { var a = new Array(); for (var i = 0; i < this.asn1Array.length; i++) { var asn1Obj = this.asn1Array[i]; a.push(asn1Obj.getEncodedHex()); } if (this.sortFlag == true) a.sort(); this.hV = a.join(‘‘); return this.hV; }; if (typeof params != "undefined") { if (typeof params.sortflag != "undefined" && params.sortflag == false) this.sortFlag = false; } }; YAHOO.lang.extend(KJUR.asn1.DERSet, KJUR.asn1.DERAbstractStructured); // ******************************************************************** /** * class for ASN.1 DER TaggedObject * @name KJUR.asn1.DERTaggedObject * @class class for ASN.1 DER TaggedObject * @extends KJUR.asn1.ASN1Object * @description * <br/> * Parameter ‘tagNoNex‘ is ASN.1 tag(T) value for this object. * For example, if you find ‘[1]‘ tag in a ASN.1 dump, * ‘tagNoHex‘ will be ‘a1‘. * <br/> * As for optional argument ‘params‘ for constructor, you can specify *ANY* of * following properties: * <ul> * <li>explicit - specify true if this is explicit tag otherwise false * (default is ‘true‘).</li> * <li>tag - specify tag (default is ‘a0‘ which means [0])</li> * <li>obj - specify ASN1Object which is tagged</li> * </ul> * @example * d1 = new KJUR.asn1.DERUTF8String({‘str‘:‘a‘}); * d2 = new KJUR.asn1.DERTaggedObject({‘obj‘: d1}); * hex = d2.getEncodedHex(); */ KJUR.asn1.DERTaggedObject = function(params) { KJUR.asn1.DERTaggedObject.superclass.constructor.call(this); this.hT = "a0"; this.hV = ‘‘; this.isExplicit = true; this.asn1Object = null; /** * set value by an ASN1Object * @name setString * @memberOf KJUR.asn1.DERTaggedObject# * @function * @param {Boolean} isExplicitFlag flag for explicit/implicit tag * @param {Integer} tagNoHex hexadecimal string of ASN.1 tag * @param {ASN1Object} asn1Object ASN.1 to encapsulate */ this.setASN1Object = function(isExplicitFlag, tagNoHex, asn1Object) { this.hT = tagNoHex; this.isExplicit = isExplicitFlag; this.asn1Object = asn1Object; if (this.isExplicit) { this.hV = this.asn1Object.getEncodedHex(); this.hTLV = null; this.isModified = true; } else { this.hV = null; this.hTLV = asn1Object.getEncodedHex(); this.hTLV = this.hTLV.replace(/^../, tagNoHex); this.isModified = false; } }; this.getFreshValueHex = function() { return this.hV; }; if (typeof params != "undefined") { if (typeof params[‘tag‘] != "undefined") { this.hT = params[‘tag‘]; } if (typeof params[‘explicit‘] != "undefined") { this.isExplicit = params[‘explicit‘]; } if (typeof params[‘obj‘] != "undefined") { this.asn1Object = params[‘obj‘]; this.setASN1Object(this.isExplicit, this.hT, this.asn1Object); } } }; YAHOO.lang.extend(KJUR.asn1.DERTaggedObject, KJUR.asn1.ASN1Object); /** * Create a new JSEncryptRSAKey that extends Tom Wu‘s RSA key object. * This object is just a decorator for parsing the key parameter * @param {string|Object} key - The key in string format, or an object containing * the parameters needed to build a RSAKey object. * @constructor */ var JSEncryptRSAKey = /** @class */ (function (_super) { __extends(JSEncryptRSAKey, _super); function JSEncryptRSAKey(key) { var _this = _super.call(this) || this; // Call the super constructor. // RSAKey.call(this); // If a key key was provided. if (key) { // If this is a string... if (typeof key === "string") { _this.parseKey(key); } else if (JSEncryptRSAKey.hasPrivateKeyProperty(key) || JSEncryptRSAKey.hasPublicKeyProperty(key)) { // Set the values for the key. _this.parsePropertiesFrom(key); } } return _this; } /** * Method to parse a pem encoded string containing both a public or private key. * The method will translate the pem encoded string in a der encoded string and * will parse private key and public key parameters. This method accepts public key * in the rsaencryption pkcs #1 format (oid: 1.2.840.113549.1.1.1). * * @todo Check how many rsa formats use the same format of pkcs #1. * * The format is defined as: * PublicKeyInfo ::= SEQUENCE { * algorithm AlgorithmIdentifier, * PublicKey BIT STRING * } * Where AlgorithmIdentifier is: * AlgorithmIdentifier ::= SEQUENCE { * algorithm OBJECT IDENTIFIER, the OID of the enc algorithm * parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1) * } * and PublicKey is a SEQUENCE encapsulated in a BIT STRING * RSAPublicKey ::= SEQUENCE { * modulus INTEGER, -- n * publicExponent INTEGER -- e * } * it‘s possible to examine the structure of the keys obtained from openssl using * an asn.1 dumper as the one used here to parse the components: http://lapo.it/asn1js/ * @argument {string} pem the pem encoded string, can include the BEGIN/END header/footer * @private */ JSEncryptRSAKey.prototype.parseKey = function (pem) { try { var modulus = 0; var public_exponent = 0; var reHex = /^s*(?:[0-9A-Fa-f][0-9A-Fa-f]s*)+$/; var der = reHex.test(pem) ? Hex.decode(pem) : Base64.unarmor(pem); var asn1 = ASN1.decode(der); // Fixes a bug with OpenSSL 1.0+ private keys if (asn1.sub.length === 3) { asn1 = asn1.sub[2].sub[0]; } if (asn1.sub.length === 9) { // Parse the private key. modulus = asn1.sub[1].getHexStringValue(); // bigint this.n = parseBigInt(modulus, 16); public_exponent = asn1.sub[2].getHexStringValue(); // int this.e = parseInt(public_exponent, 16); var private_exponent = asn1.sub[3].getHexStringValue(); // bigint this.d = parseBigInt(private_exponent, 16); var prime1 = asn1.sub[4].getHexStringValue(); // bigint this.p = parseBigInt(prime1, 16); var prime2 = asn1.sub[5].getHexStringValue(); // bigint this.q = parseBigInt(prime2, 16); var exponent1 = asn1.sub[6].getHexStringValue(); // bigint this.dmp1 = parseBigInt(exponent1, 16); var exponent2 = asn1.sub[7].getHexStringValue(); // bigint this.dmq1 = parseBigInt(exponent2, 16); var coefficient = asn1.sub[8].getHexStringValue(); // bigint this.coeff = parseBigInt(coefficient, 16); } else if (asn1.sub.length === 2) { // Parse the public key. var bit_string = asn1.sub[1]; var sequence = bit_string.sub[0]; modulus = sequence.sub[0].getHexStringValue(); this.n = parseBigInt(modulus, 16); public_exponent = sequence.sub[1].getHexStringValue(); this.e = parseInt(public_exponent, 16); } else { return false; } return true; } catch (ex) { return false; } }; /** * Translate rsa parameters in a hex encoded string representing the rsa key. * * The translation follow the ASN.1 notation : * RSAPrivateKey ::= SEQUENCE { * version Version, * modulus INTEGER, -- n * publicExponent INTEGER, -- e * privateExponent INTEGER, -- d * prime1 INTEGER, -- p * prime2 INTEGER, -- q * exponent1 INTEGER, -- d mod (p1) * exponent2 INTEGER, -- d mod (q-1) * coefficient INTEGER, -- (inverse of q) mod p * } * @returns {string} DER Encoded String representing the rsa private key * @private */ JSEncryptRSAKey.prototype.getPrivateBaseKey = function () { var options = { array: [ new KJUR.asn1.DERInteger({ int: 0 }), new KJUR.asn1.DERInteger({ bigint: this.n }), new KJUR.asn1.DERInteger({ int: this.e }), new KJUR.asn1.DERInteger({ bigint: this.d }), new KJUR.asn1.DERInteger({ bigint: this.p }), new KJUR.asn1.DERInteger({ bigint: this.q }), new KJUR.asn1.DERInteger({ bigint: this.dmp1 }), new KJUR.asn1.DERInteger({ bigint: this.dmq1 }), new KJUR.asn1.DERInteger({ bigint: this.coeff }) ] }; var seq = new KJUR.asn1.DERSequence(options); return seq.getEncodedHex(); }; /** * base64 (pem) encoded version of the DER encoded representation * @returns {string} pem encoded representation without header and footer * @public */ JSEncryptRSAKey.prototype.getPrivateBaseKeyB64 = function () { return hex2b64(this.getPrivateBaseKey()); }; /** * Translate rsa parameters in a hex encoded string representing the rsa public key. * The representation follow the ASN.1 notation : * PublicKeyInfo ::= SEQUENCE { * algorithm AlgorithmIdentifier, * PublicKey BIT STRING * } * Where AlgorithmIdentifier is: * AlgorithmIdentifier ::= SEQUENCE { * algorithm OBJECT IDENTIFIER, the OID of the enc algorithm * parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1) * } * and PublicKey is a SEQUENCE encapsulated in a BIT STRING * RSAPublicKey ::= SEQUENCE { * modulus INTEGER, -- n * publicExponent INTEGER -- e * } * @returns {string} DER Encoded String representing the rsa public key * @private */ JSEncryptRSAKey.prototype.getPublicBaseKey = function () { var first_sequence = new KJUR.asn1.DERSequence({ array: [ new KJUR.asn1.DERObjectIdentifier({ oid: "1.2.840.113549.1.1.1" }), new KJUR.asn1.DERNull() ] }); var second_sequence = new KJUR.asn1.DERSequence({ array: [ new KJUR.asn1.DERInteger({ bigint: this.n }), new KJUR.asn1.DERInteger({ int: this.e }) ] }); var bit_string = new KJUR.asn1.DERBitString({ hex: "00" + second_sequence.getEncodedHex() }); var seq = new KJUR.asn1.DERSequence({ array: [ first_sequence, bit_string ] }); return seq.getEncodedHex(); }; /** * base64 (pem) encoded version of the DER encoded representation * @returns {string} pem encoded representation without header and footer * @public */ JSEncryptRSAKey.prototype.getPublicBaseKeyB64 = function () { return hex2b64(this.getPublicBaseKey()); }; /** * wrap the string in block of width chars. The default value for rsa keys is 64 * characters. * @param {string} str the pem encoded string without header and footer * @param {Number} [width=64] - the length the string has to be wrapped at * @returns {string} * @private */ JSEncryptRSAKey.wordwrap = function (str, width) { width = width || 64; if (!str) { return str; } var regex = "(.{1," + width + "})( +|$ ?)|(.{1," + width + "})"; return str.match(RegExp(regex, "g")).join(" "); }; /** * Retrieve the pem encoded private key * @returns {string} the pem encoded private key with header/footer * @public */ JSEncryptRSAKey.prototype.getPrivateKey = function () { var key = "-----BEGIN RSA PRIVATE KEY----- "; key += JSEncryptRSAKey.wordwrap(this.getPrivateBaseKeyB64()) + " "; key += "-----END RSA PRIVATE KEY-----"; return key; }; /** * Retrieve the pem encoded public key * @returns {string} the pem encoded public key with header/footer * @public */ JSEncryptRSAKey.prototype.getPublicKey = function () { var key = "-----BEGIN PUBLIC KEY----- "; key += JSEncryptRSAKey.wordwrap(this.getPublicBaseKeyB64()) + " "; key += "-----END PUBLIC KEY-----"; return key; }; /** * Check if the object contains the necessary parameters to populate the rsa modulus * and public exponent parameters. * @param {Object} [obj={}] - An object that may contain the two public key * parameters * @returns {boolean} true if the object contains both the modulus and the public exponent * properties (n and e) * @todo check for types of n and e. N should be a parseable bigInt object, E should * be a parseable integer number * @private */ JSEncryptRSAKey.hasPublicKeyProperty = function (obj) { obj = obj || {}; return (obj.hasOwnProperty("n") && obj.hasOwnProperty("e")); }; /** * Check if the object contains ALL the parameters of an RSA key. * @param {Object} [obj={}] - An object that may contain nine rsa key * parameters * @returns {boolean} true if the object contains all the parameters needed * @todo check for types of the parameters all the parameters but the public exponent * should be parseable bigint objects, the public exponent should be a parseable integer number * @private */ JSEncryptRSAKey.hasPrivateKeyProperty = function (obj) { obj = obj || {}; return (obj.hasOwnProperty("n") && obj.hasOwnProperty("e") && obj.hasOwnProperty("d") && obj.hasOwnProperty("p") && obj.hasOwnProperty("q") && obj.hasOwnProperty("dmp1") && obj.hasOwnProperty("dmq1") && obj.hasOwnProperty("coeff")); }; /** * Parse the properties of obj in the current rsa object. Obj should AT LEAST * include the modulus and public exponent (n, e) parameters. * @param {Object} obj - the object containing rsa parameters * @private */ JSEncryptRSAKey.prototype.parsePropertiesFrom = function (obj) { this.n = obj.n; this.e = obj.e; if (obj.hasOwnProperty("d")) { this.d = obj.d; this.p = obj.p; this.q = obj.q; this.dmp1 = obj.dmp1; this.dmq1 = obj.dmq1; this.coeff = obj.coeff; } }; return JSEncryptRSAKey; }(RSAKey)); /** * * @param {Object} [options = {}] - An object to customize JSEncrypt behaviour * possible parameters are: * - default_key_size {number} default: 1024 the key size in bit * - default_public_exponent {string} default: ‘010001‘ the hexadecimal representation of the public exponent * - log {boolean} default: false whether log warn/error or not * @constructor */ var JSEncrypt = /** @class */ (function () { function JSEncrypt(options) { options = options || {}; this.default_key_size = parseInt(options.default_key_size, 10) || 1024; this.default_public_exponent = options.default_public_exponent || "010001"; // 65537 default openssl public exponent for rsa key type this.log = options.log || false; // The private and public key. this.key = null; } /** * Method to set the rsa key parameter (one method is enough to set both the public * and the private key, since the private key contains the public key paramenters) * Log a warning if logs are enabled * @param {Object|string} key the pem encoded string or an object (with or without header/footer) * @public */ JSEncrypt.prototype.setKey = function (key) { if (this.log && this.key) { console.warn("A key was already set, overriding existing."); } this.key = new JSEncryptRSAKey(key); }; /** * Proxy method for setKey, for api compatibility * @see setKey * @public */ JSEncrypt.prototype.setPrivateKey = function (privkey) { // Create the key. this.setKey(privkey); }; /** * Proxy method for setKey, for api compatibility * @see setKey * @public */ JSEncrypt.prototype.setPublicKey = function (pubkey) { // Sets the public key. this.setKey(pubkey); }; /** * Proxy method for RSAKey object‘s decrypt, decrypt the string using the private * components of the rsa key object. Note that if the object was not set will be created * on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor * @param {string} str base64 encoded crypted string to decrypt * @return {string} the decrypted string * @public */ JSEncrypt.prototype.decrypt = function (str) { // Return the decrypted string. try { return this.getKey().decrypt(b64tohex(str)); } catch (ex) { return false; } }; /** * Proxy method for RSAKey object‘s encrypt, encrypt the string using the public * components of the rsa key object. Note that if the object was not set will be created * on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor * @param {string} str the string to encrypt * @return {string} the encrypted string encoded in base64 * @public */ JSEncrypt.prototype.encrypt = function (str) { // Return the encrypted string. try { return hex2b64(this.getKey().encrypt(str)); } catch (ex) { return false; } }; /** * Proxy method for RSAKey object‘s sign. * @param {string} str the string to sign * @param {function} digestMethod hash method * @param {string} digestName the name of the hash algorithm * @return {string} the signature encoded in base64 * @public */ JSEncrypt.prototype.sign = function (str, digestMethod, digestName) { // return the RSA signature of ‘str‘ in ‘hex‘ format. try { return hex2b64(this.getKey().sign(str, digestMethod, digestName)); } catch (ex) { return false; } }; /** * Proxy method for RSAKey object‘s verify. * @param {string} str the string to verify * @param {string} signature the signature encoded in base64 to compare the string to * @param {function} digestMethod hash method * @return {boolean} whether the data and signature match * @public */ JSEncrypt.prototype.verify = function (str, signature, digestMethod) { // Return the decrypted ‘digest‘ of the signature. try { return this.getKey().verify(str, b64tohex(signature), digestMethod); } catch (ex) { return false; } }; /** * Getter for the current JSEncryptRSAKey object. If it doesn‘t exists a new object * will be created and returned * @param {callback} [cb] the callback to be called if we want the key to be generated * in an async fashion * @returns {JSEncryptRSAKey} the JSEncryptRSAKey object * @public */ JSEncrypt.prototype.getKey = function (cb) { // Only create new if it does not exist. if (!this.key) { // Get a new private key. this.key = new JSEncryptRSAKey(); if (cb && {}.toString.call(cb) === "[object Function]") { this.key.generateAsync(this.default_key_size, this.default_public_exponent, cb); return; } // Generate the key. this.key.generate(this.default_key_size, this.default_public_exponent); } return this.key; }; /** * Returns the pem encoded representation of the private key * If the key doesn‘t exists a new key will be created * @returns {string} pem encoded representation of the private key WITH header and footer * @public */ JSEncrypt.prototype.getPrivateKey = function () { // Return the private representation of this key. return this.getKey().getPrivateKey(); }; /** * Returns the pem encoded representation of the private key * If the key doesn‘t exists a new key will be created * @returns {string} pem encoded representation of the private key WITHOUT header and footer * @public */ JSEncrypt.prototype.getPrivateKeyB64 = function () { // Return the private representation of this key. return this.getKey().getPrivateBaseKeyB64(); }; /** * Returns the pem encoded representation of the public key * If the key doesn‘t exists a new key will be created * @returns {string} pem encoded representation of the public key WITH header and footer * @public */ JSEncrypt.prototype.getPublicKey = function () { // Return the private representation of this key. return this.getKey().getPublicKey(); }; /** * Returns the pem encoded representation of the public key * If the key doesn‘t exists a new key will be created * @returns {string} pem encoded representation of the public key WITHOUT header and footer * @public */ JSEncrypt.prototype.getPublicKeyB64 = function () { // Return the private representation of this key. return this.getKey().getPublicBaseKeyB64(); }; JSEncrypt.version = "3.0.0-rc.1"; return JSEncrypt; }()); window.JSEncrypt = JSEncrypt; obj.JSEncrypt = JSEncrypt; obj.default = JSEncrypt; Object.defineProperty(obj, ‘__esModule‘, { value: true }); return obj }
b. 测试:
test.html<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>rsa加密/解密测试</title> </head> <!--引入jsencrypt.js--> <script src="./rsa.js"></script> <script type="text/javascript"> //公钥 var PUBLIC_KEY = ‘-----BEGIN PUBLIC KEY-----MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCoZZ8iUBprOIc0kGckr5ax6/Fd9IKKMc/XHayKEAvqpS0oz0b1ojEkpkdZBk0OWNhp73YNV+YLKBwwxOwb3u3hl8nBLoG/RilEbBMdCf55cUzNsfn/XF5CiLr/aci/OHuTe6ULvXs280T5M+nUh3iKdiT6z9XrFbH69C+xFoNInwIDAQAB-----END PUBLIC KEY-----‘; //私钥 var PRIVATE_KEY = ‘-----BEGIN RSA PRIVATE KEY-----MIICXgIBAAKBgQCoZZ8iUBprOIc0kGckr5ax6/Fd9IKKMc/XHayKEAvqpS0oz0b1ojEkpkdZBk0OWNhp73YNV+YLKBwwxOwb3u3hl8nBLoG/RilEbBMdCf55cUzNsfn/XF5CiLr/aci/OHuTe6ULvXs280T5M+nUh3iKdiT6z9XrFbH69C+xFoNInwIDAQABAoGAe+ape7msdo+VC5vkCB4ZprePVC3/jmawIfr3ZG4CFpeJ7qjz8O9xcSHXBS2ZrKC6Otex6Idv/213sHpzrt4L7+rSrgMOauWNjSVjr4T4Z168uvsnNocn+3GWfzbBPQj3PhjE64R/MkWDvuq2UK945WYtqFaC6LT1mJAXhjxqpiECQQDYGWYbCsUgQS0LnDzReyotkb9Eyr5UGlI8Nzn3PvwwkIS3N3yUsm2t3UokOw02DlhkC4f1aT097fM1w0FruSNNAkEAx31taitIGwgJg+yPmvwTs8AENm0wxi/V6loEXPBPxX2R4NjSG+ExYzA7/daDq//McKsX0EcYcsFN0E3HwSANmwJBAJUXGOHpUU1Kiihrd25TWissVdjBRATEUB4pP/2738QlwNqjFnmEjLUaak+KyjeUOBl19ywymkUCyPw7pQQMLDUCQQC84DKSDPyuK0PnFjk5QmXdEHZsmaFOY8gjpKrw286La8KMonz8TJCYGvkR8uKkHQMRwcxANLAfJopoKNxyK8j1AkEAwcY3EHeKe4i3FhCjGSqAGAzFFBS1jzTNZxw/cxMMCbfxFH4WvhowqoC1iAKDyZ7HF7V+RcxcfuhoBJi/3+ImEg==-----END RSA PRIVATE KEY-----‘; var obj = rsa() var crypt = new obj.JSEncrypt(); crypt.setPublicKey(PUBLIC_KEY); crypt.setPrivateKey(PRIVATE_KEY); //使用公钥加密 var encrypted = crypt.encrypt(‘hello world‘); //使用私钥解密 var decrypted = crypt.decrypt(encrypted); console.log(encrypted); console.log(decrypted); </script> </html>
c. 输出:
C3r7m03r2ykaKVeggguYj0pSw0mqsludH2nk1DlQRzuTVi7gslQ3m0E1Cbyp6SOnWreui/08bVraCMJeAiGtUHweBBVQ2TwtWE2cAFIkdGA1HtVKP3TJvuBjjSnCG5wKiUddYwfR/rlAtbKpjWqGsQDsSwjidL6faahWvoWmXa8= test.html:23 hello world
以上是关于phpjavascript使用rsa进行加密/解密的主要内容,如果未能解决你的问题,请参考以下文章