推荐系统[八]算法实践总结V1:淘宝逛逛and阿里飞猪个性化推荐:召回算法实践总结冷启动召回复购召回用户行为召回等算法实战
Posted 汀、
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了推荐系统[八]算法实践总结V1:淘宝逛逛and阿里飞猪个性化推荐:召回算法实践总结冷启动召回复购召回用户行为召回等算法实战相关的知识,希望对你有一定的参考价值。
0.前言:召回排序流程策略算法简介
推荐可分为以下四个流程,分别是召回、粗排、精排以及重排:
- 召回是源头,在某种意义上决定着整个推荐的天花板;
- 粗排是初筛,一般不会上复杂模型;
- 精排是整个推荐环节的重中之重,在特征和模型上都会做的比较复杂;
- 重排,一般是做打散或满足业务运营的特定强插需求,同样不会使用复杂模型;
-
召回层:召回解决的是从海量候选item中召回千级别的item问题
- 统计类,热度,LBS;
- 协同过滤类,UserCF、ItemCF;
- U2T2I,如基于user tag召回;
- I2I类,如Embedding(Word2Vec、FastText),GraphEmbedding(Node2Vec、DeepWalk、EGES);
- U2I类,如DSSM、YouTube DNN、Sentence Bert;
-
模型类:模型类的模式是将用户和item分别映射到一个向量空间,
以上是关于推荐系统[八]算法实践总结V1:淘宝逛逛and阿里飞猪个性化推荐:召回算法实践总结冷启动召回复购召回用户行为召回等算法实战的主要内容,如果未能解决你的问题,请参考以下文章
推荐系统[八]算法实践总结V3:重排在快手短视频推荐系统中的应用and手淘信息流多兴趣多目标重排技术
推荐系统[八]算法实践总结V0:腾讯音乐全民K歌推荐系统架构及粗排设计
推荐系统[八]算法实践总结V0:腾讯音乐全民K歌推荐系统架构及粗排设计
推荐系统[八]算法实践总结V2:排序学习框架(特征提取标签获取方式)以及京东推荐算法精排技术实战