使用javaApi监控 kafka 集群的环境下消费组的积压信息

Posted 蜗牛不慢O

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用javaApi监控 kafka 集群的环境下消费组的积压信息相关的知识,希望对你有一定的参考价值。

需求:提供一个能够监控 kafka 集群的环境下消费组的积压信息。当某个消费组积压的信息超过设定的阈值的时候,程序主动告警提醒。
难点:
集群环境,有多个机器。
每个机器上存在多个主题,多个消费组。
使用javaapi查询
思路:
1。先获取集群环境下某台机子下的所有主题
2。查询该主题下绑定的消费组id
3。查询该主题下具体消费组的信息
具体实现
1。环境准备,导入客户端和kafkaApi


  <!-- 解决: java.lang.NoSuchMethodError: org.apache.kafka.common.network.NetworkSend.<init>(Ljava/lang/String;[Ljava/nio/ByteBuffer;)V      -->
     
		<dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>0.11.0.1</version>
            <exclusions>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
            </exclusions>
        </dependency>

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_2.11</artifactId>
            <version>0.11.0.1</version>
            <exclusions>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
            </exclusions>
        </dependency>

2。代码实现

        // 获取该集群下的所有主题
        Set<String> topics = this.getAllTopic();

        for (String topic : topics) 
            // 查询该主题下绑定的消费组id
            Set<String> groupIds = this.getAllGroupsByTopic(topic);

            // 查询该主题下具体消费组的信息
            for (String groupId : groupIds) 
               this.getGroupInfoFromTopic(url, port, topic, groupId,list);
            
        
   /**
     * 获取kafka集群下的主题
     * 注意:AdminClient是org.apache.kafka.clients.admin包下的
     */
    public Set<String> getAllTopic()

        Properties props = new Properties();
        props.put("bootstrap.servers", servers);
        org.apache.kafka.clients.admin.AdminClient adminClient = org.apache.kafka.clients.admin.AdminClient.create(props);
        ListTopicsResult listTopicsResult = adminClient.listTopics();
        Set<String> topics = new HashSet<>();
        try 
            topics = listTopicsResult.names().get();
         catch (InterruptedException | ExecutionException e) 
            e.printStackTrace();
        


        return topics;
    


	/**
     * 获取指定主题下的消费组【group_id】
     * @param topic
     * @return
     */
    public Set<String> getAllGroupsByTopic(String topic)

        String host = url + ":" + port;
        Set<String> groups;
        AdminClient client = AdminClient.createSimplePlaintext(host);
        try 

            Seq<GroupOverview> groupOverviewSeq = client.listAllGroupsFlattened().toSeq();
            List<GroupOverview> allGroups = JavaConversions.seqAsJavaList(groupOverviewSeq);
            groups = new HashSet<>();

            for (GroupOverview overview: allGroups) 

                String groupID = overview.groupId();
                scala.collection.immutable.Map<TopicPartition, Object> map = client.listGroupOffsets(groupID);
                Map<TopicPartition, Object> offsets = JavaConversions.mapAsJavaMap(map);

                Set<TopicPartition> partitions = offsets.keySet();

                for (TopicPartition tp: partitions) 

                    if (tp.topic().equals(topic)) 

                        groups.add(groupID);

                    

                

            
         finally 
            client.close();
        

        return groups;

    






     /**
     *  @param url 集群服务器地址
     * @param port 端口
     * @param topic 主题
     * @param groupId 消费组id
     * @param list 结果集合
     */
    private void getGroupInfoFromTopic(String url,
                                       Integer port,
                                       String topic,
                                       String groupId, List<KafkaInfoDto> list) 
    

        long sum = 0L;
        long sumOffset = 0L;
        long lag = 0L;

        //获取每个partation的元数据信息
        TreeMap<Integer, PartitionMetadata> leader = this.findLeader(url, port, topic);
        List<TopicAndPartition> partitions = new ArrayList<>();
        for (Map.Entry<Integer, PartitionMetadata> entry : leader.entrySet()) 
            int partition = entry.getKey();
            TopicAndPartition testPartition = new TopicAndPartition(topic, partition);
            partitions.add(testPartition);
        


        BlockingChannel channel = new BlockingChannel(url,
                port,
                BlockingChannel.UseDefaultBufferSize(),
                BlockingChannel.UseDefaultBufferSize(),
                5000);


        // 获取具体的kafka消费实例信息
        String server = url + ":" + port;
        KafkaConsumer<String, String> kafkaConsumer = this.getKafkaConsumer(server,groupId,topic);

        // 遍历
        for (Map.Entry<Integer, PartitionMetadata> entry : leader.entrySet()) 

            KafkaInfoDto kafkaInfoDto = new KafkaInfoDto();
            Integer partition = entry.getKey();
            channel.connect();
            OffsetFetchRequest fetchRequest = new OffsetFetchRequest(groupId,
                    partitions, (short) 1, 0, null);
            channel.send(fetchRequest.underlying());


            OffsetAndMetadata committed = kafkaConsumer.committed(new TopicPartition(topic, partition));
            long partitionOffset = committed.offset();
            sumOffset += partitionOffset;
            String leadUrl = entry.getValue().leader().host();
            String clientName = "Client_" + topic + "_" + partition;
            SimpleConsumer consumer = new SimpleConsumer(leadUrl, port, 100000,
                    64 * 1024, clientName);


            // 获取该消费者组每个分区最后提交的偏移量
            long readOffset = getLastOffset(consumer,
                    topic,
                    partition,
                    kafka.api.OffsetRequest.LatestTime(),
                    clientName);
            sum += readOffset;

            // 注意,得关闭不然会出现异常
            consumer.close();


            log.info("主题是:,消费者组:,积压的偏移量为: :,分区为:",topic,groupId,lag,partition);


            lag = sum - sumOffset;
            kafkaInfoDto.setSumOffset(sumOffset);
            kafkaInfoDto.setSum(sum);
            kafkaInfoDto.setLag(lag);
            kafkaInfoDto.setGroupId(groupId);
            kafkaInfoDto.setTopic(topic);
            kafkaInfoDto.setPartition(partition);
            list.add(kafkaInfoDto);

        
    


  /**
     * 获取最主要的leader服务下的partation元数据信息
     *
     * @param url       服务器
     * @param port        端口号
     * @param topic       主题名
     * @return
     */
	private TreeMap<Integer, PartitionMetadata> findLeader(String url,
                                                           int port,
                                                           String topic) 
        TreeMap<Integer, PartitionMetadata> map = new TreeMap<>();

        SimpleConsumer consumer = null;
        try 
            consumer = new SimpleConsumer(url, port, 100000,
                    64 * 1024,
                    "leaderLookup" + new Date().getTime());
            List<String> topics = Collections.singletonList(topic);
            TopicMetadataRequest req = new TopicMetadataRequest(topics);
            TopicMetadataResponse resp = consumer.send(req);

            List<TopicMetadata> metaData = resp.topicsMetadata();
            for (TopicMetadata item : metaData) 
                for (PartitionMetadata part : item.partitionsMetadata()) 
                    map.put(part.partitionId(), part);
                
            
         catch (Exception e) 
            System.out.println("Error communicating with url [" + url + "] to find Leader for [" + topic + ", ] Reason: " + e);
         finally 
            if (consumer != null)
                consumer.close();
        
        return map;
    

 /**
     * 获取该消费者组每个分区最后提交的偏移量
     *
     * @param consumer   消费者组对象
     * @param topic      主题
     * @param partition  分区
     * @param whichTime  最晚时间
     * @param clientName 客户端名称
     * @return 偏移量
     */
    private static long getLastOffset(SimpleConsumer consumer, String topic, int partition, long whichTime, String clientName) 
        TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
        Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<>();
        requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
        kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
        OffsetResponse response = consumer.getOffsetsBefore(request);
        if (response.hasError()) 
            log.error("Error fetching data Offset Data the url. Reason: " + response.errorCode(topic, partition));
            return 0;
        
        long[] offsets = response.offsets(topic, partition);
        return offsets[0];
    




    /**
     * 获取Kafka消费者实例
     *
     * group  消费者组
     * topic  主题名
     * servers 服务器列表
     * @return KafkaConsumer<String, String>
     */
    private KafkaConsumer<String, String> getKafkaConsumer(String servers,
                                                           String group,
                                                           String topic)
        Properties props = new Properties();
        props.put("bootstrap.servers", servers);
        props.put("group.id", group);
        props.put("enable.auto.commit", "true");
        props.put("auto.commit.interval.ms", "1000");
        props.put("max.poll.records", 100);
        props.put("session.timeout.ms", "30000");
        props.put("auto.offset.reset", "earliest");
        props.put("key.deserializer", StringDeserializer.class.getName());
        props.put("value.deserializer", StringDeserializer.class.getName());
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
        consumer.subscribe(Collections.singletonList(topic));
        return consumer;
    

3。重要参数说明


    // 服务的地址【ip+port 可以在配置文件设置多组,达到集群效果】
    @Value("$spring.kafka.bootstrap-servers")
    private String servers;

    // 服务地址 【可以在配置文件设置多组,达到集群效果】
    @Value("$spring.kafka.url")
    private String url;


	// 端口
    @Value("$spring.kafka.port")
    private Integer port;

4。application-dev,yml配置

# kafka配置
  kafka:
#    bootstrap-servers: xxx
    bootstrap-servers: xxx
    # 自定义属性
    url: xxx
    port: xxx

5。需要注意的点

环境配置那里尽量保持两个依赖的版本一致

如果出现jar冲突导致启动失败,可以考虑在pom文件排除相关jar包

如果出现  <!--  java.lang.NoSuchMethodError: org.apache.kafka.common.network.NetworkSend.<init>(Ljava/lang/String;[Ljava/nio/ByteBuffer;)V      -->
     
异常,是没有导入正确的客户端。

以上是关于使用javaApi监控 kafka 集群的环境下消费组的积压信息的主要内容,如果未能解决你的问题,请参考以下文章

kafka之Eagle 监控

Day547.Kafka-Eagle监控&Kraft模式

zookeeper接入kafka,安装部署CMAK监控kafka,Windows环境

Kafka集群监控安全机制与最佳实践

使用Kafka Eagle监控管理Kafka集群

使用Kafka Eagle监控管理Kafka集群