跪求2-3树的删除关键字代码

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了跪求2-3树的删除关键字代码相关的知识,希望对你有一定的参考价值。

要源代码,
C语言的,
只要适用于3阶B树删除关键字即可
不要求更高阶的。
1L大哥,我怎么看也不是B树啊

参考技术A 这是我前几天写的,看了下应该可以满足要求,由于测试还不够,不知道有没有bug。

第一点你自己改改,2、3都达到了,至于第四,不用说肯定是平衡了的二叉树相对查找效率要高一些,平衡,随机插入,打乱插入等操作都是为了防止最差情况的线性树的出现。测试的话用rand()生成随机数外加time.h里的几个函数,配合使用下就出来了。

#include <stdio.h>
#include <stdlib.h>

// binary search tree
typedef struct BST

int data;
struct BST* lhs;
struct BST* rhs;
BST;

// 插入一个节点
BST* BSTInsertNode(BST* root, int elem)

BST* node;
node = (BST*)malloc(sizeof(BST));
node->data = elem;
node->lhs = node->rhs = 0;

if(!root)
return node;

while(1)

if(node->data < root->data)

if(root->lhs)
root = root->lhs;
else

root->lhs = node;
return root->lhs;


else

if(root->rhs)
root = root->rhs;
else

root->rhs = node;
return root->rhs;





// 获得父节点
BST* BSTGetParentNode(BST* root, BST* node)

if(root == node)
return 0;

if(root->lhs && node->data < root->lhs->data)
return BSTGetParentNode(root->lhs, node);
else if(root->rhs && node->data > root->rhs->data)
return BSTGetParentNode(root->rhs, node);
else
return root;


// 删除一个节点
BST* BSTDeleteNode(BST* root, BST* node)

BST* parent;
BST** whichNode;
BST* temp;

if(root != node)


parent = BSTGetParentNode(root, node);
whichNode = parent->lhs == node ? &parent->lhs : &parent->rhs;

else
whichNode = &root;
if(!node->lhs && !node->rhs)
*whichNode = 0;
else if(!((node->lhs ? 1 : 0) ^ (node->rhs ? 1 : 0)))
*whichNode = node->lhs ? node->lhs : node->rhs;
else

temp = node->rhs;
while(temp->lhs)
temp = temp->lhs;
temp->lhs = node->lhs;
*whichNode = node->rhs;

free(node);
return *whichNode;


// 删除树
void BSTDeleteTree(BST* node)

if(node)

BSTDeleteTree(node->lhs);
BSTDeleteTree(node->rhs);
free(node);



// 建造树,从数组构造
BST* BSTBuildTree(int* beg, int* end)

BST* root;

if(beg >= end)
return 0;

root = (BST*)malloc(sizeof(BST));
root->data = *beg++;
root->lhs = root->rhs = 0;

while(beg != end)
BSTInsertNode(root, *beg++);

return root;


// 查找节点
BST* BSTSearchNode(BST* root, int elem)

if(root)

if(elem < root->data)
return BSTSearchNode(root->lhs, elem);
else if(elem > root->data)
return BSTSearchNode(root->rhs, elem);
else
return root;

else
return 0;


// 获得最小值
BST* BSTGetMinimumNode(BST* root)

while(root->lhs)
root = root->lhs;
return root;


// 获得最大值
BST* BSTGetMaximumNode(BST* root)

while(root->rhs)
root = root->rhs;
return root;


// 前序遍历
void BSTPreorderTraverse(BST* node)

if(node)

printf("%d ", node->data);
BSTPreorderTraverse(node->lhs);
BSTPreorderTraverse(node->rhs);



// 中序遍历
void BSTInorderTraverse(BST* node)

if(node)

BSTInorderTraverse(node->lhs);
printf("%d ", node->data);
BSTInorderTraverse(node->rhs);



// 后序遍历
void BSTPostorderTraverse(BST* node)

if(node)

BSTPostorderTraverse(node->lhs);
BSTPostorderTraverse(node->rhs);
printf("%d ", node->data);



// 获得前继值
BST* BSTGetPredecessor(BST* root, BST* node)

BST* predecessor;
BST* rightCld;

if(node->lhs)
return BSTGetMaximumNode(node->lhs);

predecessor = rightCld = node;
while((predecessor = BSTGetParentNode(root, predecessor)))
if(predecessor->rhs == rightCld)
return predecessor;
else
rightCld = predecessor;
return 0;


// 获得后继值
BST* BSTGetSuccessor(BST* root, BST* node)

BST* successor;
BST* leftCld;

if(node->rhs)
return BSTGetMinimumNode(node->rhs);

successor = leftCld = node;
while((successor = BSTGetParentNode(root, successor)))
if(successor->lhs == leftCld)
return successor;
else
leftCld = successor;
return 0;


// 获得树高
int BSTGetTreeHeight(BST* root)

int l;
int r;
if(root)

l = BSTGetTreeHeight(root->lhs);
r = BSTGetTreeHeight(root->rhs);
return 1 + (l > r ? l : r);

else
return -1;


// 计算子节点数
int BSTGetSubtreeNodeNum(BST* node)

if(node)
return BSTGetSubtreeNodeNum(node->lhs)
+ BSTGetSubtreeNodeNum(node->rhs)
+ 1;
else
return 0;


// 用于打乱数组,交换
inline void Swap(int* a, int* b)

int temp;
temp = *a;
*a = *b;
*b = temp;


// 用于打乱数组,qsort的比较用过程
inline int CMP(const void* lhs, const void* rhs)

return *(const int*)lhs - *(const int*)rhs;


// 数组有序?
int IsOrdered(int* beg, int* end)

int attri;
int cmpVal;
if(beg >= end)
return 0;
if(end - beg <= 2)
return 1;

if(*beg < *(beg + 1))
attri = 1;
else
attri = 0;

cmpVal = *beg++;
while(++beg != end)

if(attri)

if(cmpVal > *beg)
return 0;
else

if(cmpVal < *beg)
return 0;


return 1;


// 高层次打乱数组
void HighlyUnorderArray(int* beg, int* end)


int* mid = beg + (end - beg)/2;
int* folk;
if(!IsOrdered(beg, end))
qsort(beg, end - beg, sizeof(int), CMP);

if((mid - beg) & 1)
Swap(beg++, mid);
folk = beg + 2;
while(folk < mid)

Swap(beg++, folk++);
Swap(beg++, folk++);


folk = mid + 2;
while(folk < end)

Swap(folk, folk - 1);
folk += 2;



// 中序遍历结果输出到数组
void BSTInorderWalkToArray(BST* root, int** p)

if(root)

BSTInorderWalkToArray(root->lhs, p);
**p = root->data;
(*p)++;
BSTInorderWalkToArray(root->rhs, p);



// 平衡树,返回平衡好的新树
BST* BSTBalanceTree(BST* root)

int size = BSTGetSubtreeNodeNum(root);
int* a = (int*)malloc(sizeof(int) * size);
int* end = a;
BST* balancedTree;

BSTInorderWalkToArray(root, &end);
HighlyUnorderArray(a, end);
balancedTree = BSTBuildTree(a, end);
free(a);
return balancedTree;


int main()

int a[] = 5,6,3,7,9,8,1,0,4,2;
int c[] = 50,17,76,9,23,54,14,19,72,12,67;
BST* bstTree = BSTBuildTree(a, a + sizeof(a)/sizeof(a[0]));

BSTPreorderTraverse(bstTree);
putchar('\n');
BSTInorderTraverse(bstTree);
putchar('\n');
BSTPostorderTraverse(bstTree);
printf("\n\n");

BST* balancedTree = BSTBalanceTree(bstTree);
printf("%d %d\n", BSTGetTreeHeight(bstTree), BSTGetTreeHeight(balancedTree));
BSTDeleteTree(bstTree);
BSTDeleteTree(balancedTree);
参考技术B B Tree=Binary Search Tree?
1L你太逗了
懒得写你去CSDN搜代码吧
我这有B树代码。。但是没注释
你指定看不懂

以上是关于跪求2-3树的删除关键字代码的主要内容,如果未能解决你的问题,请参考以下文章

二叉搜索树的删除和联结

大话数据结构C语言56 二叉排序树的查找插入和删除

B树及其基本操作(查找插入删除)

B树的相关概念及其插入删除操作(C语言)

二叉平衡树的插入和删除操作

B*树