leetcode中有关 最大的子序和问题

Posted zhangchuan1001

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了leetcode中有关 最大的子序和问题相关的知识,希望对你有一定的参考价值。

思路:实际上是一个动态规划问题。设sum[i]为以第i个元素结尾且和最大的连续子数组。假设对于元素i,所有以它前面的元素结尾的子数组的长度都已经求得,那么以第i个元素结尾且和最大的连续子数组实际上,要么是以第i-1个元素结尾且和最大的连续子数组加上这个元素,要么是只包含第i个元素,即sum[i]= max(sum[i-1] + a[i], a[i])。可以通过判断sum[i-1] + a[i]是否大于a[i]来做选择,而这实际上等价于判断sum[i-1]是否大于0。由于每次运算只需要前一次的结果,因此并不需要像普通的动态规划那样保留之前所有的计算结果,只需要保留上一次的即可,因此算法的时间和空间复杂度都很小

 解法1:

public int maxSubArray(int[] nums

{// 动态规划法

int sum=nums[0];

int n=nums[0];

for(int i=1;i<nums.length;i++)

   {

          if(n>0)n+=nums[i];

        else n=nums[i];

     if(sum<n) sum=n;

}

return sum;

}

解法2:如果前一个数与后一个数相加之后的值小于后一个数,则前一个数小于0,摄取前一个值,取当前值为dp数组中的值。

 public int maxSubArray(int[] nums) {
        int[] dp = new int[nums.length];
        dp[0] = nums[0];
        for(int i = 1; i< nums.length; i++)
        {
            dp[i] = Math.max(dp[i -1] + nums[i], nums[i]);
        }
        int k = 0;
        for(int i = 0; i < dp.length; i++)
        {
            if(dp[i] > dp[k]) k = i;
        }
        return dp[k];  
    }

以上是关于leetcode中有关 最大的子序和问题的主要内容,如果未能解决你的问题,请参考以下文章

《LeetCode之每日一题》:81.最大子序和

LeetCode 53. 最大子序和

Leetcode刷题5—最大子序和

leetcode53. 最大子序和(Maximum Subarray)

LeetCode 简单 - 最大子序和(53)

53-最大子序和(动态规划与分治法)