leetcode 1005 Maximize Sum Of Array After K Negations & leetcode 1006 Clumsy Factorial
Posted exhausttolive
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了leetcode 1005 Maximize Sum Of Array After K Negations & leetcode 1006 Clumsy Factorial相关的知识,希望对你有一定的参考价值。
leetcode 1005
Sort the array first.
The negation rules are quite simple:
- execute negation for K times,so use a for loop
- after negation, if the next number (if has) is smaller, the next number is next to negation (if still in for loop). Here we use a greedy strategy. If the next number is non-negative and smaller than the current one, negation it will result in less sum loss(for example current is 4, and next is 1), if the next number is negative and smaller than the current one, negation it will result in more sum (for example current is 4 and next is -3).
After that , compute the sum.
class Solution {
public int largestSumAfterKNegations(int[] A, int K) {
Arrays.sort(A);
int idx = 0;
for (int i = 0; i < K; ++i) {
A[idx] = -A[idx];
if (idx + 1 < A.length) {
if (A[idx + 1] < A[idx]) idx += 1;
}
}
int sum = 0;
for (int i = 0; i < A.length; ++i) sum += A[i];
return sum;
}
}
leetcode 1006
Use brute-force way. Code seems quite ugly but works fine. The complexity is O(n)
public int clumsy(int N) {
int ret = 0;
int flag = 1;
for (;N > 0;) {
if (N == 1) {
ret += (flag * N);
break;
}
else if (N == 2) {
ret += (flag * N * (N - 1));
break;
}
else if (N == 3) {
ret += flag * ((N * (N - 1)) / (N - 2));
break;
}
else {
ret = ret + flag * ((N * (N - 1)) / (N - 2)) + N - 3;
flag = -1;
N -= 4;
}
}
return ret;
}
Also I saw an O(n) solution with the fact that for n >= 5, (n + 2) > (n * (n - 1)) / (n - 2) > (n + 1).
so we get (n * (n - 1)) / (n -2) = n + 1 here.
therefore for n = 1, result = 1
for n = 2, result = 2
for n = 3, result = 6
for n = 4, result = 7,
for n >= 5, for (n - 1) % 4 == 0, result is 5 * 4 / 3 + 2 - 1 or n * (n - 1)/ (n - 2) + … + (8 * 7 / 6) - 5 * 4/ 3 + 2 - 1 = (n + 1) + 2 - 1 = n + 2
if (n - 1) % 4 == 1, result is 6 * 5 / 4 + 3 - 2 * 1 = (n + 1) + 1 = n + 2
if (n - 1) % 4 == 2 , result = 7 * 6 / 5 + 4 - (3 * 2) = n + 1 - 2 = n -1;
if (n - 1) % 4 == 3, result = 8 * 7 / 6 + 5 - 4 * 3 / 2 + 1 = n + 1
the code is as below, although I may not spend much time figuring out the formula
class Solution {
public int clumsy(int N) {
int[] ret = {1, 2, 6, 7};
if (N < 5) return ret[N - 1];
if ((N - 1) % 4 == 0) return N + 2;
else if ((N - 1) % 4 == 1) return N + 2;
else if ((N - 1) % 4 == 2) return N - 1;
else return N + 1;
}
}
以上是关于leetcode 1005 Maximize Sum Of Array After K Negations & leetcode 1006 Clumsy Factorial的主要内容,如果未能解决你的问题,请参考以下文章
LeetCode --- 1005. Maximize Sum Of Array After K Negations 解题报告
LeetCode 1005. Maximize Sum Of Array After K Negations (K 次取反后最大化的数组和)
1005. Maximize Sum Of Array After K Negations
Leetcode_easy849. Maximize Distance to Closest Person
一文通数据结构与算法之——贪心算法+常见题型与解题策略+Leetcode经典题
[LeetCode] 849. Maximize Distance to Closest Person_Easy tag: BFS