19.2.13 [LeetCode 72] Edit Distance

Posted TobicYAL

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了19.2.13 [LeetCode 72] Edit Distance相关的知识,希望对你有一定的参考价值。

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace ‘h‘ with ‘r‘)
rorse -> rose (remove ‘r‘)
rose -> ros (remove ‘e‘)

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation: 
intention -> inention (remove ‘t‘)
inention -> enention (replace ‘i‘ with ‘e‘)
enention -> exention (replace ‘n‘ with ‘x‘)
exention -> exection (replace ‘n‘ with ‘c‘)
exection -> execution (insert ‘u‘)

题意

求最小编辑距离

有3个操作:删除,插入和替换

题解

一开始想了个dp,不够快

技术图片
 1 class Solution {
 2 public:
 3     int minDistance(string word1, string word2) {
 4         int l1 = word1.length(), l2 = word2.length();
 5         vector<vector<int>>dp(l1+1, vector<int>(l2+1, INT_MAX));
 6         for (int i = 0; i <= l1; i++)dp[i][0] = i;
 7         for (int i = 0; i <= l2; i++)dp[0][i] = i;
 8         for (int i = 1; i <= l1; i++) {
 9             int minnum = INT_MAX;
10             for (int j = 1; j <= l2; j++) {
11                 if (word1[i-1] == word2[j-1])
12                     dp[i][j] =  dp[i - 1][j - 1];
13                 else {
14                     int dp1 = dp[i - 1][j] + 1;
15                     int dp2 = dp[i - 1][j - 1] + 1;
16                     dp[i][j] = min(dp1, dp2);
17                     if (minnum != INT_MAX)
18                         dp[i][j] = min(minnum + j, dp[i][j]);
19                 }
20                 minnum = min(dp[i][j] - j, minnum);
21             }
22         }
23         return dp[l1][l2];
24     }
25 };
View Code

其实是有个地方我没注意到: dp[i][j] 与 dp[i][j-1] 的关系实际上是映射着插入操作的

技术图片
 1 class Solution {
 2 public:
 3     int minDistance(string word1, string word2) {
 4         int l1 = word1.length(), l2 = word2.length();
 5         vector<vector<int>>dp(l1+1, vector<int>(l2+1, INT_MAX));
 6         for (int i = 0; i <= l1; i++)dp[i][0] = i;
 7         for (int i = 0; i <= l2; i++)dp[0][i] = i;
 8         for (int i = 1; i <= l1; i++) {
 9             for (int j = 1; j <= l2; j++) {
10                 if (word1[i-1] == word2[j-1])
11                     dp[i][j] =  dp[i - 1][j - 1];
12                 else {
13                     dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i][j - 1])) + 1;
14                 }
15             }
16         }
17         return dp[l1][l2];
18     }
19 };
View Code

貌似换成数组会更快,我还是第一次知道可以不动态申请内存这样写数组……

技术图片
 1 class Solution {
 2 public:
 3     int minDistance(string word1, string word2) {
 4         int l1 = word1.length(), l2 = word2.length();
 5         int dp[l1+1][l2+1];
 6         for (int i = 0; i <= l1; i++)dp[i][0] = i;
 7         for (int i = 0; i <= l2; i++)dp[0][i] = i;
 8         for (int i = 1; i <= l1; i++) {
 9             for (int j = 1; j <= l2; j++) {
10                 if (word1[i-1] == word2[j-1])
11                     dp[i][j] =  dp[i - 1][j - 1];
12                 else {
13                     dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i][j - 1])) + 1;
14                 }
15             }
16         }
17         return dp[l1][l2];
18     }
19 };
View Code

以上是关于19.2.13 [LeetCode 72] Edit Distance的主要内容,如果未能解决你的问题,请参考以下文章

LeetCode 72 编辑距离

Leetcode72 Edit Distance

Leetcode 72.编辑距离

Leetcode 72. Edit Distance

LeetCode-72.Edit Distance

LeetCode-72-Edit Distance