Ubuntu 18.04 nvidia driver 390.48 安装 TensorFlow 1.12.0 和 PyTorch 1.0.0 详细教程

Posted time-flow1024

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Ubuntu 18.04 nvidia driver 390.48 安装 TensorFlow 1.12.0 和 PyTorch 1.0.0 详细教程相关的知识,希望对你有一定的参考价值。

最近要在个人台式机上搭建TensorFlow和PyTorch运行环境,期间遇到了一些问题。这里就把解决的过程记录下来,同时也可以作为安装上述环境的过程记录。

如果没有遇到类似的问题,想直接从零安装上述两个包的运行环境的,请直接阅读第三部分

一、硬件和环境配置:

1)操作系统:Ubuntu 18.04;

2)NVIDIA Driver Version :390.48;(可通过nvidia-smi命令查到)

3)GPU:GTX 1080; (可通过nvidia-smi命令查到)

4)已安装CUDA Toolkit 9.1; (可通过nvcc --version命令查到)

5)已安装Anaconda3。

二、问题描述及解决过程:

1)在安装Anaconda3后,创建名为mydev的虚拟环境

conda create --name mydev

2)随后

source activate mydev

启用虚拟环境

3)安装torch1.0.0和tensorflow1.12.0

conda install -c pytorch pytorch

conda install tensorflow-gpu

4)安装完成后,检测上述两个包是否均能够使用GPU进行训练

pytorch的测试代码:

# -*- coding: utf-8 -*-
from __future__ import print_function
import os
import torch

cuda = torch.cuda.is_available()
if cuda:
    print(OK! CUDA device detected.)
else :
    print(Error, CUDA device NOT detected.)

tensorflow的测试代码:

import tensorflow as tf
print(tf.test.is_gpu_available())

测试结果:

pytorch测试结果显示:OK! CUDA device detected.

tensorflow测试结果显示:False.

说明torch可以检测到GPU但是tensorflow没检测到GPU。

5)开始查错。首先

source deactivate

退出当前虚拟环境

6)然后

source activate mydev

重新进入虚拟环境,

conda list

让conda列出当前虚拟环境下安装的所有包的信息,目的是查看包的版本

发现一个名为cudatoolkit的包,其版本是9.2,是随着tensorflow一并安装到虚拟环境内的。看似没有什么问题。

7)在当前虚拟环境内进入python

python

在python内,敲入:

>>> import tensorflow as tf

>>> tf.__file__

>>> tf.__version__

来获取tensorflow的安装位置,我们要检查一下tensorflow到底安装到了哪里,以及版本对不对。

从python的输出结果来看:

tensorflow的版本是1.10.0,而且位置也不对,被安装到了~/.local/lib/python3.6/site-packages/...目录下,而不是类似~/anaconda3/envs/mydev/...下。

同样类似的问题也出现在了pytorch上。

突然回想起来电脑刚装完驱动和CUDA Toolkit的时候,可能用过pip安装过tensorflow,而且当时没有意识到tensorflow有CPU和GPU版本之分,就误安装了tensorflow1.10的CPU版,而pip安装的包会优先于conda虚拟环境内安装的包,所以都乱套了。

8)根据上面的发现,我们要退出当前虚拟环境,

source deactivate

然后在主环境内

pip uninstall tensorflow

pip uninstall torch

卸载掉这两个旧的包。

9)卸载之后,再

source activate mydev

进入虚拟环境,运行tensorflow的测试代码,显示

cudaGetDevice() failed. Status: CUDA driver version is insufficient for CUDA runtime version

意思是CUDA驱动版本和CUDA运行库版本不匹配,这是由于之前所说的cudatoolkit版本是9.2,版本过高造成的。

10)于是根据出错信息上网搜解决措施,发现在conda虚拟环境内,利用

conda update --all

可以使conda意识到在当前虚拟环境内,包之间的版本依赖问题,敲入上述指令后,发现conda提出的解决方案中,将cudatoolkit降级为9.0,pytorch降级为0.4.1。

于是很欣慰的敲入上述指令并运行,发现tensorflow可以发现GPU了。

11)第10步中我们降级了pytorch,所以我们要重新安装pytorch为1.0.0版:

conda install -c pytorch pytorch

12)完整操作后,我们就有了tensorflow1.12.0和pytorch1.0.0了~

三、上述的环境配置全过程整理

1)首先,如果您的电脑之前利用pip命令曾经安装过tensorflow或者pytorch,请用

pip uninstall tensorflow

pip uninstall torch

在pip中卸载掉这两个包。

2)随后按照如下步骤操作:

创建虚拟环境

conda create --name mydev

进入虚拟环境

source activate mydev

安装tensorflow和pytorch

conda install -c pytorch pytorch

conda install tensorflow-gpu

让conda再次整理包间的依赖

conda update --all

重新安装pytorch

conda install -c pytorch pytorch

3)测试安装好的两个包是否均支持GPU,测试代码已在上面给出。

四、总结

1)安装tensorflow时,一定要写tensorflow-gpu而不是tensorflow,否则安装的是tensorflow的CPU版而不是GPU版。

2)理论上来说,pip和conda命令是冲突的。pip解决的是python内包之间的依赖问题,而conda的目标是管理任何编程语言之间的包的依赖问题。所以根据喜好,以后尽量使用二者中的一个。

3)当包的状态不对时,可以利用packageName.__version__和packageName.__file__可以查看包的版本和安装位置。

 


以上是关于Ubuntu 18.04 nvidia driver 390.48 安装 TensorFlow 1.12.0 和 PyTorch 1.0.0 详细教程的主要内容,如果未能解决你的问题,请参考以下文章

Ubuntu18.04 安装 nvidia2080Ti显卡驱动

Ubuntu18.04 安装 nvidia2080Ti显卡驱动

Ubuntu18.04 安装 nvidia2080Ti显卡驱动

Ubuntu18.04安装Nvidia Driver+Cuda+Cudnn

Ubuntu18.04安装Nvidia Driver+Cuda+Cudnn

解决ubuntu18.04安装nvidia驱动报nvidia-dkms依赖无法安装(全程配图)