Leetcode 315. Count of Smaller Numbers After Self
Posted haoweizh
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Leetcode 315. Count of Smaller Numbers After Self相关的知识,希望对你有一定的参考价值。
Problem:
You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i]
is the number of smaller elements to the right of nums[i]
.
Example:
Input: [5,2,6,1]
Output: [2,1,1,0]
Explanation:
To the right of 5 there are 2 smaller elements (2 and 1).
To the right of 2 there is only 1 smaller element (1).
To the right of 6 there is 1 smaller element (1).
To the right of 1 there is 0 smaller element.
Solution:
这道题我看到的第一想法是模拟一个插入排序的过程。从右往左扫描,用vec数组保存已经从小到大排序好的数组,用二分法找到下一个元素应该插入的位置,将索引号保存并插入vec数组即可,虽然看似时间复杂度为O(nlogn),其实插入操作的时间复杂度为O(n),所以其实时间复杂度为O(n2)。
1 class Solution { 2 public: 3 vector<int> countSmaller(vector<int>& nums) { 4 vector<int> result(nums.size()); 5 if(nums.size() == 0) return result; 6 vector<int> vec; 7 for(int i = nums.size()-1;i >= 0;--i){ 8 int start = 0; 9 int end = vec.size(); 10 while(start < end){ 11 int pivot = start + (end-start)/2; 12 if(nums[i] > vec[pivot]) 13 end = pivot; 14 else 15 start = pivot+1; 16 } 17 result[i] = vec.size()-start; 18 if(start == vec.size()) vec.push_back(nums[i]); 19 else vec.insert(vec.begin()+start,nums[i]); 20 } 21 return result; 22 } 23 };
现在讲讲另一种用FenwickTree树状数组的解法,我们用一个rank数组记录数组中每个元素的rank,比如[5,2,6,1]的rank数组是[3,2,4,1],然后将rank数组逆序去更新一个FenwickTree树状数组,数组初始化为[0,0,0,0,0],在这个例子中的更新过程为:
rank数组:[1,4,2,3]
逆转数组:[1,6,2,5]
1. [0,1,0,0,0] //对于第一个数1,对应rank数组中的1,其左侧的和为0,所以result[4-0-1]=0
2. [0,1,0,0,1] //对于第二个数6,对应rank数组中的4,其左侧和为1,所以result[2]=1
3. [0,1,1,0,1] //对于第三个数2,对应rank数组中的2,其左侧和为1,所以result[1]=1
4. [0,1,1,1,1] //对于第四个数5,对应rank数组中的3,其左侧和为2,所以result[1]=2
Code:
1 class FenwickTree{ 2 public: 3 FenwickTree(int N){ 4 data = vector<int>(N+1); 5 tree = vector<int>(N+1); 6 } 7 void update(int index){ 8 for(int i = index;i < tree.size();i+=lowBit(i)) 9 tree[i] += 1; 10 data[index]++; 11 } 12 int getSum(int last){ 13 int result = 0; 14 for(int i = last;i > 0;i-=lowBit(i)) 15 result += tree[i]; 16 return result; 17 } 18 private: 19 int lowBit(int x){ 20 return x&(-x); 21 } 22 vector<int> tree; 23 vector<int> data; 24 }; 25 class Solution { 26 public: 27 vector<int> countSmaller(vector<int>& nums) { 28 set<int> s(nums.begin(),nums.end()); 29 unordered_map<int,int> um; 30 int index = 0; 31 for(auto i:s){ 32 um[i] = index; 33 index++; 34 } 35 vector<int> rank; 36 for(int i = nums.size()-1;i >= 0;--i) 37 rank.push_back(um[nums[i]]+1); 38 FenwickTree tree(s.size()); 39 int m = nums.size(); 40 vector<int> result(m); 41 for(int i = 0;i != rank.size();++i){ 42 result[m-i-1] = tree.getSum(rank[i]-1); 43 tree.update(rank[i]); 44 } 45 return result; 46 } 47 };
以上是关于Leetcode 315. Count of Smaller Numbers After Self的主要内容,如果未能解决你的问题,请参考以下文章
Leetcode 315. Count of Smaller Numbers After Self
leetcode No315. Count of Smaller Numbers After Self
leetcode No315. Count of Smaller Numbers After Self
leetcode No315. Count of Smaller Numbers After Self