Leetcode: Convex Polygon

Posted neverlandly

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Leetcode: Convex Polygon相关的知识,希望对你有一定的参考价值。

Given a list of points that form a polygon when joined sequentially, find if this polygon is convex (Convex polygon definition).

Note:

There are at least 3 and at most 10,000 points.
Coordinates are in the range -10,000 to 10,000.
You may assume the polygon formed by given points is always a simple polygon (Simple polygon definition). In other words, we ensure that exactly two edges intersect at each vertex, and that edges otherwise don‘t intersect each other.
Example 1:

[[0,0],[0,1],[1,1],[1,0]]

Answer: True
Explanation:
技术分享

Example
2: [[0,0],[0,10],[10,10],[10,0],[5,5]]

Answer: False
Explanation:
技术分享

https://discuss.leetcode.com/topic/70706/beyond-my-knowledge-java-solution-with-in-line-explanation

https://discuss.leetcode.com/topic/70664/c-7-line-o-n-solution-to-check-convexity-with-cross-product-of-adajcent-vectors-detailed-explanation

The key observation for convexity is that vector pi+1-pi always turns to the same direction to pi+2-pi formed by any 3 sequentially adjacent vertices, i.e., cross product (pi+1-pi) x (pi+2-pi) does not change sign when traversing sequentially along polygon vertices.

Note that for any 2D vectors v1v2,

  • v1 x v2 = det([v1, v2])

which is the determinant of 2x2 matrix [v1, v2]. And the sign of det([v1, v2]) represents the positive z-direction of right-hand system from v1 to v2. So det([v1, v2]) ≥ 0 if and only if v1 turns at most 180 degrees counterclockwise to v2.
技术分享

 1 public class Solution {
 2     public boolean isConvex(List<List<Integer>> points) {
 3         // For each set of three adjacent points A, B, C, find the cross product AB · BC. If the sign of
 4         // all the cross products is the same, the angles are all positive or negative (depending on the
 5         // order in which we visit them) so the polygon is convex.
 6         boolean gotNegative = false;
 7         boolean gotPositive = false;
 8         int numPoints = points.size();
 9         int B, C;
10         for (int A = 0; A < numPoints; A++) {
11             // Trick to calc the last 3 points: n - 1, 0 and 1.
12             B = (A + 1) % numPoints;
13             C = (B + 1) % numPoints;
14     
15             int crossProduct =
16                 crossProductLength(
17                     points.get(A).get(0), points.get(A).get(1),
18                     points.get(B).get(0), points.get(B).get(1),
19                     points.get(C).get(0), points.get(C).get(1));
20             if (crossProduct < 0) {
21                 gotNegative = true;
22             }
23             else if (crossProduct > 0) {
24                 gotPositive = true;
25             }
26             if (gotNegative && gotPositive) return false;
27         }
28     
29         // If we got this far, the polygon is convex.
30         return true;
31     }
32     
33     // Return the cross product AB x BC.
34     // The cross product is a vector perpendicular to AB and BC having length |AB| * |BC| * Sin(theta) and
35     // with direction given by the right-hand rule. For two vectors in the X-Y plane, the result is a
36     // vector with X and Y components 0 so the Z component gives the vector‘s length and direction.
37     private int crossProductLength(int Ax, int Ay, int Bx, int By, int Cx, int Cy)
38     {
39         // Get the vectors‘ coordinates.
40         int ABx = Bx - Ax;
41         int ABy = By - Ay;
42         int BCx = Cx - Bx;
43         int BCy = Cy - By;
44     
45         // Calculate the Z coordinate of the cross product.
46         return (ABx * BCy - ABy * BCx);
47     }
48 }

 








以上是关于Leetcode: Convex Polygon的主要内容,如果未能解决你的问题,请参考以下文章

[LeetCode] Convex Polygon 凸多边形

B Convex Polygon

B Convex Polygon

R语言为散点图添加凸包(convex hull):数据预处理(创建一个包含每组数据凸包边界的数据集)ggplot2使用geom_polygon函数为可视化图像添加凸包(convex hull)

poj1259The Picnic & hdu6219 Empty Convex Polygon(17沈阳区域赛C)最大空凸包

记录shapely包的Polygon的self.wkt