Ubuntu16.04+Tensorflow+CUDA9.0+cuDNN7.0 环境简明搭建指南

Posted SHARP-EYE

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Ubuntu16.04+Tensorflow+CUDA9.0+cuDNN7.0 环境简明搭建指南相关的知识,希望对你有一定的参考价值。

最近在研究风格化得内容,发现搭建环境实在是很头疼的事情,虽然网上已经有各路大神总结整理好了很多搭建指南,各种问题的解决方案都已经罗列出来供大家参考。然后参考终究是参考,真正自己上手,发现仍旧是各种坑,各种问题层出不穷。所幸最后靠着大咖们的肩膀成功了,现想总结一下本人的搭建之路,也给后来人多一个参考。当然很多下载、安装的步骤就不去明说了,请查阅文末的参考文章。

一、安装N卡驱动

请参考:Ubuntu16.04 Nvidia显卡驱动简明安装指南

https://www.cnblogs.com/sharpeye/p/10104188.html

 

二、安装CUDA-9.0

下载如下文件:

cuda_9.0.176_384.81_linux.run

cuda_9.0.176.1_linux.run

cuda_9.0.176.2_linux.run ... 等更新文件

[传送门] https://developer.nvidia.com/cuda-90-download-archive

在安装之前先执行如下代码,添加依赖:

sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

再执行:

$ sudo chmod +x cuda_9.0.176_384.81_linux.run   

$ sudo chmod +x cuda_9.0.176.1_linux.run   

$ sudo chmod +x cuda_9.0.176.2_linux.run   

$ ./cuda_9.0.176_384.81_linux.run --override

$ ./cuda_9.0.176.1_linux.run

$ ./cuda_9.0.176.2_linux.run 

 

三、安装cuDNN7.0

下载cuDNN7.0文件 [传送门] https://developer.nvidia.com/rdp/cudnn-archive  (需要注册·登录)

解压文件:

$ tar -zxvf cudnn-9.0-linux-x64-v7.tgz

把文件移到cuda目录下:

$ sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-9.0/lib64/

$ sudo cp  cuda/include/cudnn.h /usr/local/cuda-9.0/include/

3.给文件读取的权限

$ sudo chmod a+r /usr/local/cuda-9.0/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

至此cudnn配置完成

 

四、安装anaconda和Tensorflow

安装git:

sudo apt install git

克隆pyenv仓库,安装 pyenv:

git clone https://github.com/yyuu/pyenv.git ~/.pyenv

echo \'export PYENV_ROOT="$HOME/.pyenv"\' >> ~/.bashrc

echo \'export PATH="$PYENV_ROOT/bin:$PATH"\' >> ~/.bashrc

echo \'eval "$(pyenv init -)"\' >> ~/.bashrc

exec $SHELL -l

source ~/.bashrc

重启终端 !

查看可供安装的版本:

pyenv install –list

安装anaconda

pyenv install anaconda3-5.0.1

pyenv rehash

查看版本

pyenv versions

切换版本

pyenv global anaconda3-5.0.1

通过Anaconda安装Tensorflow:

conda create -n tensorflow-gpu python=3.5

source activate tensorflow-gpu #激活环境

source deactivate tensorflow-gpu #关闭环境

pip install tensorflow-gpu==1.5.0

如果发现以后使用当中出现 ImportError: libcublas.so.9.0: cannot open shared object file 的错误,可尝试以下解决方法:

sudo ldconfig /usr/local/cuda-9.0/lib64 

export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

添加到配置中去

 

参考:

http://www.cnblogs.com/lypniuyou/p/9518751.html

https://www.jianshu.com/p/eb6a52925566

https://blog.csdn.net/KGzhang/article/details/78619434

https://blossomnoodles.github.io/cnBlogs/2018/04/30/Ubuntu18.04-Tensorlow-install.html

https://www.jianshu.com/p/eb6a52925566

https://blog.csdn.net/AllenIrving/article/details/80406709

https://blog.csdn.net/weixin_40920290/article/details/80462734

https://blog.csdn.net/sinat_40276791/article/details/80403784?utm_source=blogxgwz5

https://blog.csdn.net/zhuoyueljl/article/details/83011641

以上是关于Ubuntu16.04+Tensorflow+CUDA9.0+cuDNN7.0 环境简明搭建指南的主要内容,如果未能解决你的问题,请参考以下文章

Ubuntu16.04安装TensorFlow

ubuntu tensorflow install(Ubuntu16.04+CUDA9.0+cuDNN7.5+Python3.6+TensorFlow1.5)

markdown Ubuntu16.04 + 1080下配置Tensorflow

Ubuntu 16.04安装配置TensorFlow GPU版本

Ubuntu16.04 安装TensorFlow-GPU

GTX 1080+Ubuntu16.04+CUDA8.0+cuDNN5.0+TensorFlow