LeetCode动态规划Edit Distance
Posted 华不摇曳
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LeetCode动态规划Edit Distance相关的知识,希望对你有一定的参考价值。
描述
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros" Output: 3 Explanation: horse -> rorse (replace \'h\' with \'r\') rorse -> rose (remove \'r\') rose -> ros (remove \'e\')
Example 2:
Input: word1 = "intention", word2 = "execution" Output: 5 Explanation: intention -> inention (remove \'t\') inention -> enention (replace \'i\' with \'e\') enention -> exention (replace \'n\' with \'x\') exention -> exection (replace \'n\' with \'c\') exection -> execution (insert \'u\')
思路:动态规划
这是一个经典的动态规划问题,思路参考斯坦福的课程:http://www.stanford.edu/class/cs124/lec/med.pdf
这里把加2变成加1即可
dp[i][0] = i
;dp[0][j] = j
;dp[i][j] = dp[i - 1][j - 1]
, ifword1[i - 1] = word2[j - 1]
;dp[i][j] = min(dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1)
, otherwise.
class Solution { public: int minDistance(string word1, string word2) { int m = word1.size(), n = word2.size(); vector<vector<int> > dp(m+1, vector<int>(n+1, 0)); for(int i = 1;i<=m;++i) dp[i][0] = i; for(int i = 1;i<=n;++i) dp[0][i] = i; for(int i = 1;i<=m;++i){ for(int j = 1;j<=n;++j){ if(word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1]; else dp[i][j] = min(dp[i-1][j-1], min(dp[i][j-1], dp[i-1][j])) + 1; } } return dp[m][n]; } };
以上是关于LeetCode动态规划Edit Distance的主要内容,如果未能解决你的问题,请参考以下文章