LeetCode动态规划Generate Parentheses(括号匹配问题)
Posted 华不摇曳
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LeetCode动态规划Generate Parentheses(括号匹配问题)相关的知识,希望对你有一定的参考价值。
思路1——DP
设:P[i]表示当n=i的时候括号组合串。 观察规律:我们知道,要形成一个括号的组合,肯定不是凭空产生的,产生一个P[3]的组合,那肯定是把"("和")"分别插在P[2]中间的。
我们假设产生P[3]组合的时候,之前的组合都是正确的,那么通过插入"(",")"肯定会把P[2]分成两个部分(括号内一个,括号外一个)
看似好像有很多插入的方法,但是,其实仔细想想,反正"("得增加一个,由于括号组合的第一一定是"(",为什么不把新增的"("放在开头呢?这样我们就只用考虑")"了
会怎么把P[2]切割就好了,我们知道P[2]的组合有P[0]+P[2],P[1]+P[1],P[2]+P[0],
通过写出前几个可以观察到下面的规律
P[0]= [""]
P[1] = [()] = "("+P[0]+")"+P[0]
P[2] = [()(),(())] = "("+P[0]+")"+P[1] , "("+P[1]+")" +P[0]
P[3] = [()()(),()(()),(())(),(()()),((()))] = "("+P[0]+")"+P[2] , "("+P[1]+")"+P[1], "("+P[2]+")" +P[0]
我们可以知道了组合方式:
- P[i] = "("+P[i-j-1]+")"+P[j] (j<i,j=0,1,2,......)
//dp[0] = "" //dp[i]=‘(‘+ dp[k]+‘)‘+dp[i-1-k],k=0..i-i class Solution { public: vector<string> generateParenthesis(int n) { vector< vector<string> > dp(n+1, vector<string>()); dp[0].push_back(""); for(int i=1; i<=n; ++i){ for(int k=0; k<i; ++k){ for(string s1: dp[k]){ for(string s2: dp[i-1-k]) dp[i].push_back("("+s1+")"+s2); } } } return dp[n]; } };
思路2:回溯
假设我能枚举所有的情况,我们考虑合理的括号组合是什么样的:
- 左括号数==右括号数
- 左括号一定要先于右括号
所以我们可以用一个大数组来表示字符串,2个指针leftpare_need,moreleft来表示左右括号,我们递归遍历所有情况,把满足条件的情况加入list就行了
class Solution { public: vector<string> result; vector<string> generateParenthesis(int n) { helper("", n, 0); return result; } /* this hepler function insert result strings to "vector<string> result" When number of ‘(‘ less than "n", can append ‘(‘; When number of ‘(‘ is more than number of ‘)‘, can append ‘)‘; string s : current string; int leftpare_need : number of ‘(‘ that have not put into "string s"; int moreleft : number of ‘(‘ minus number of ‘)‘ in the "string s"; */ void helper(string s, int leftpare_need, int moreleft) { if(leftpare_need == 0 && moreleft == 0) { result.push_back(s); return; } if(leftpare_need > 0) helper(s + "(", leftpare_need - 1, moreleft+1); if(moreleft > 0) helper(s + ")", leftpare_need, moreleft - 1); } };
以上是关于LeetCode动态规划Generate Parentheses(括号匹配问题)的主要内容,如果未能解决你的问题,请参考以下文章
算法动态规划 ③ ( LeetCode 62.不同路径 | 问题分析 | 自顶向下的动态规划 | 自底向上的动态规划 )
算法动态规划 ③ ( LeetCode 62.不同路径 | 问题分析 | 自顶向下的动态规划 | 自底向上的动态规划 )
算法动态规划 ⑤ ( LeetCode 63.不同路径 II | 问题分析 | 动态规划算法设计 | 代码示例 )