如何基于linux进程通信设计方案
Posted 壹点灵异
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何基于linux进程通信设计方案相关的知识,希望对你有一定的参考价值。
前言
linux下的进程通信手段基本上是从Unix平台上的进程通信手段继承而来的。而对Unix发展做出重大贡献的两大主力AT&T的贝尔实验室及BSD(加州大学伯克利分校的伯克利软件发布中心)在进程间通信方面的侧重点有所不同。前者对Unix早期的进程间通信手段进行了系统的改进和扩充,形成了“system V IPC”,通信进程局限在单个计算机内;后者则跳过了该限制,形成了基于套接口(socket)的进程间通信机制。Linux则把两者继承了下来:
其中,最初Unix IPC包括:管道、FIFO、信号;System V IPC包括:System V消息队列、System V信号灯、System V共享内存区;Posix IPC包括:Posix消息队列、Posix信号灯、Posix共享内存区。有两点需要简单说明一下:
1)由于Unix版本的多样性,电子电气工程协会(IEEE)开发了一个独立的Unix标准,这个新的ANSI Unix标准被称为计算肪车目梢浦残圆僮飨低辰缑妫≒SOIX)。现有大部分Unix和流行版本都是遵循POSIX标准的,而Linux从一开始就遵循POSIX标准;
2)BSD并不是没有涉足单机内的进程间通信(socket本身就可以用于单机内的进程间通信)。事实上,很多Unix版本的单机IPC留有BSD的痕迹,如4.4BSD支持的匿名内存映射、4.3+BSD对可靠信号语义的实现等等。
linux下进程间通信的
几种主要手段简介:
1.管道
管道是进程间通信中最古老的方式,它包括无名管道和有名管道两种,前者可用于具有亲缘关系进程间的通信,即可用于父进程和子进程间的通信,后者额克服了管道没有名字的限制,因此,除具有前者所具有的功能外,它还允许无亲缘关系进程间的通信,即可用于运行于同一台机器上的任意两个进程间的通信。
无名管道由pipe()函数创建:
#include
int pipe(int filedis);
参数filedis返回两个文件描述符:filedes[0]为读而打开,filedes为写而打开。filedes的输出是filedes[0]的输入。
在Linux系统下,有名管道可由两种方式创建:命令行方式mknod系统调用和函数mkfifo.下面的两种途径都在当前目录下生成了一个名为myfifo的有名管道:
方式一:mkfifo(“myfifo”,“rw”);
方式二:mknod myfifo p
生成了有名管道后,就可以使用一般的文件I/O函数如open、close、read、write等来对它进行操作。
2.消息队列
消息队列是消息的链接表,包括Posix消息队列system V消息队列。消息队列用于运行于同一台机器上的进程间通信,它和管道很相似,有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。
我们可以用流管道或者套接口的方式来取代它。
3.共享内存
共享内存是运行在同一台机器上的进程间通信最快的方式,因为数据不需要在不同的进程间复制。通常由一个进程创建一块共享内存区,其余进程对这块内存区进行读写。共享内存往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
首先要用的函数是shmget,它获得一个共享存储标识符。
#include
#include
#include
int shmget(key_t key, int size, int flag);
这个函数有点类似大家熟悉的malloc函数,系统按照请求分配size大小的内存用作共享内存。Linux系统内核中每个IPC结构都有的一个非负整数的标识符,这样对一个消息队列发送消息时只要引用标识符就可以了。这个标识符是内核由IPC结构的关键字得到的,这个关键字,就是上面第一个函数的key.数据类型key_t是在头文件sys/types.h中定义的,它是一个长整形的数据。在我们后面的章节中,还会碰到这个关键字。
当共享内存创建后,其余进程可以调用shmat()将其连接到自身的地址空间中。
void *shmat(int shmid, void *addr, int flag);
shmid为shmget函数返回的共享存储标识符,addr和flag参数决定了以什么方式来确定连接的地址,函数的返回值即是该进程数据段所连接的实际地址,进程可以对此进程进行读写操作。
使用共享存储来实现进程间通信的注意点是对数据存取的同步,必须确保当一个进程去读取数据时,它所想要的数据已经写好了。通常,信号量被要来实现对共享存储数据存取的同步,另外,可以通过使用shmctl函数设置共享存储内存的某些标志位如SHM_LOCK、SHM_UNLOCK等来实现。
4. 信号量
信号量又称为信号灯,它是用来协调不同进程间的数据对象的,而最主要的应用是前一节的共享内存方式的进程间通信。本质上,信号量是一个计数器,它用来记录对某个资源(如共享内存)的存取状况。一般说来,为了获得共享资源,进程需要执行下列操作:
(1) 测试控制该资源的信号量。
(2) 若此信号量的值为正,则允许进行使用该资源。进程将进号量减1.
(3) 若此信号量为0,则该资源目前不可用,进程进入睡眠状态,直至信号量值大于0,进程被唤醒,转入步骤(1)。
(4) 当进程不再使用一个信号量控制的资源时,信号量值加1.如果此时有进程正在睡眠等待此信号量,则唤醒此进程。
维护信号量状态的是Linux内核操作系统而不是用户进程。我们可以从头文件/usr/ src/linux/include/linux/sem.h中看到内核用来维护信号量状态的各个结构的定义。信号量是一个数据集合,用户可以单独使用这一集合的每个元素。要调用的第一个函数是semget,用以获得一个信号量ID.
#include
#include
#include
int semget(key_t key, int nsems, int flag);
key是前面讲过的IPC结构的关键字,它将来决定是创建新的信号量集合,还是引用一个现有的信号量集合。nsems是该集合中的信号量数。如果是创建新集合(一般在服务器中),则必须指定nsems;如果是引用一个现有的信号量集合(一般在客户机中)则将nsems指定为0.
semctl函数用来对信号量进行操作。
int semctl(int semid, int semnum, int cmd, union semun arg);
不同的操作是通过cmd参数来实现的,在头文件sem.h中定义了7种不同的操作,实际编程时可以参照使用。
semop函数自动执行信号量集合上的操作数组。
int semop(int semid, struct sembuf semoparray[], size_t nops);
semoparray是一个指针,它指向一个信号量操作数组。nops规定该数组中操作的数量。
下面,我们看一个具体的例子,它创建一个特定的IPC结构的关键字和一个信号量,建立此信号量的索引,修改索引指向的信号量的值,最后我们清除信号量。
5.套接口
套接口(socket)编程是实现Linux系统和其他大多数操作系统中进程间通信的主要方式之一。我们熟知的WWW服务、FTP服务、TELNET服务等都是基于套接口编程来实现的。除了在异地的计算机进程间以外,套接口同样适用于本地同一台计算机内部的进程间通信。
【来源】
以上是关于如何基于linux进程通信设计方案的主要内容,如果未能解决你的问题,请参考以下文章
[OS-Linux]详解Linux的进程间通信2------system V共享内存(Shared Memory)
[OS-Linux]详解Linux的进程间通信2------system V共享内存(Shared Memory)