Linux内存管理 mmap(补充)
Posted Arnold Lu@南京
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux内存管理 mmap(补充)相关的知识,希望对你有一定的参考价值。
之前写过一篇简单的介绍mmap()/munmap()的文章《Linux内存管理 (9)mmap》,比较单薄,这里详细的梳理一下。
从常用的使用者角度介绍两个函数的使用;然后重点是分析内核的实现流程;最后对mmap()/munmap()进行一些验证测试。
mmap系统调用并不完全是为了共享内存而设计的,它本身提供了不同于一般对普通文件的访问方式,进程可以像读写内存一样对普通文件操作。
mmap系统调用使得进程之间通过映射同一个普通文件实现共享内存。普通文件被映射到进程地址空间后,进程可以像访问普通内存一样对文件进行访问,不必再调用read()/write()等操作。
mmap并不分配空间,只是将文件映射到调用进程的地址空间里(占用虚拟地址空间),然后就可以使用memcpy()等操作,内存中内容并不立即更行到文件中,而是有一段时间的延迟,可以使用msync()显式同步。
取消内存映射通过munmap()。
下面这张图示意了mmap的内存映射,起始地址是返回的addr,off和len分别对应参数offset和length。
1. mmap API解释
对mmap()/munmap()的使用比较简单,有两个参数组合导致了多样性,分别是prot和flags。
#include <sys/mman.h> void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset); int munmap(void *addr, size_t length);
下面对这些参数做一个简单的介绍:
- addr:如果不为NULL,内核会在此地址创建映射;否则,内核会选择一个合适的虚拟地址。大部分情况不指定虚拟地址,意义不大,而是让内核选择返回一个地址给用户空间使用。
- length:表示映射到进程地址空间的大小。
- prot:内存区域的读/写/执行属性。
- flags:内存映射的属性,共享、私有、匿名、文件等。
- fd:表示这是一个文件映射,fd是打开文件的句柄。如果是文件映射,需要指定fd;匿名映射就指定一个特殊的-1。
- offset:在文件映射时,表示相对文件头的偏移量;返回的地址是偏移量对应的虚拟地址。
1.1 mmap优点
1.1.1 提升效率
一般读写文件需要open、read、write,需要先将磁盘文件读取到内核cache缓冲区,然后再拷贝到用户空间内存区,设计两次读写操作。
mmap通过将磁盘文件映射到用户空间,当进程读文件时,发生缺页中断,给虚拟内存分配对应的物理内存,在通过磁盘调页操作将磁盘数据读到物理内存上,实现了用户空间数据的读取,整个过程只有一次内存拷贝。
1.1.2 用于进程间大数据量通信
两个进程映射同一个文件,在两个进程中,同一个文件区域映射的虚拟地址空间不同。一个进程操作文件时,先通过缺页获取物理内存,进而通过磁盘文件调页操作将文件数据读入内存。
另一个进程访问文件的时候,发现没有物理页面映射到虚拟内存,通过fs的缺页处理查找cache区是否有读入磁盘文件,有的话建立映射关系,这样两个进程通过共享内存就可以进行通信。
1.1.3 文件关闭,内存可以继续使用
因为在内核中已经通过fd找到对应的磁盘文件,从而将文件跟vma关联。
1.2 mmap缺点
映射时文件长度已经确定,没法通过mmap访问操作len的区间。
1.3 私有/共享、文件/匿名映射组合
共有四种组合,下面逐一介绍。
1.3.1 私有文件映射
多个进程使用同样的物理页面进行初始化,但是各个进程对内存文件的修改不会共享,也不会反映到物理文件中。
比如对linux .so动态库文件就采用这种方式映射到各个进程虚拟地址空间中。
1.3.2 私有匿名映射
mmap会创建一个新的映射,各个进程不共享,主要用于分配内存(malloc分配大内存会调用mmap)。
1.3.3 共享文件映射
多个进程通过虚拟内存技术共享同样物理内存,对内存文件的修改会反应到实际物理内存中,也是进程间通信的一种。
1.3.4 共享匿名映射
这种机制在进行fork时不会采用写时复制,父子进程完全共享同样的物理内存页,也就是父子进程通信。
2. mmap内核实现
系统调用的入口是entry_SYSCALL_64_fastpath,然后根据系统调用号在sys_call_table中找到对应的函数。
mmap()和munmap()对应的系统调用分别是SyS_mmap()和SyS_munmap()下面就来分析一下实现。
2.0 mmap/munmap调用路径
在分析具体内核实现之前,通过脚本来看看mmap/munmap调用路径。
通过增加set_ftrace_filter的函数,修改current_tracer发现函数的调用者,逐步丰富调用路径。
#!/bin/bash DPATH="/sys/kernel/debug/tracing" PID=$$ ## Quick basic checks [ `id -u` -ne 0 ] && { echo "needs to be root" ; exit 1; } # check for root permissions [ -z $1 ] && { echo "needs process name as argument" ; exit 1; } # check for args to this function mount | grep -i debugfs &> /dev/null [ $? -ne 0 ] && { echo "debugfs not mounted, mount it first"; exit 1; } #checks for debugfs mount # flush existing trace data echo > $DPATH/trace echo nop > $DPATH/current_tracer echo > $DPATH/set_ftrace_filter echo "SyS_mmap SyS_mmap_pgoff SyS_munmap SyS_open SyS_read SyS_write SyS_close SyS_brk SyS_msync" >> $DPATH/set_ftrace_filter echo "do_brk elf_map load_elf_binary" >> $DPATH/set_ftrace_filter echo "do_mmap do_munmap get_unmapped_area mmap_region vm_mmap vm_munmap vm_mmap_pgoff" >> $DPATH/set_ftrace_filter echo "__split_vma* unmap_region" >> $DPATH/set_ftrace_filter # set function tracer echo function_graph > $DPATH/current_tracer # write current process id to set_ftrace_pid file echo $PID > $DPATH/set_ftrace_pid #echo "common_pid==$PID" > /sys/kernel/debug/tracing/events/syscalls/sys_enter_mmap/filter #echo 1 > /sys/kernel/debug/tracing/events/syscalls/sys_enter_mmap/enable #echo "common_pid==$PID" > /sys/kernel/debug/tracing/events/syscalls/sys_enter_munmap/filter #echo 1 > /sys/kernel/debug/tracing/events/syscalls/sys_enter_munmap/enable # start the tracing echo 1 > $DPATH/tracing_on # execute the process exec $* #sudo cat $DPATH/trace > /home/al/v4l2/trace.txt
最后使用function_graph跟踪器查看调用关系如下:
1) | SyS_mmap() { 1) | SyS_mmap_pgoff() { 1) | vm_mmap_pgoff() { 1) | do_mmap() { 1) 0.548 us | get_unmapped_area(); 1) 3.388 us | mmap_region(); 1) 4.598 us | } 1) 5.286 us | } 1) 5.756 us | } 1) 6.058 us | } 1) | SyS_munmap() { 1) | vm_munmap() { 1) | do_munmap() { 1) + 99.985 us | unmap_region(); 1) ! 101.439 us | } 1) ! 101.838 us | } 1) ! 102.410 us | }
下面就围绕这条路径展开分析。
2.1 mmap()
mmap()系统调用的核心是do_mmap(),可以分为三部分。
第一部分通过get_unmapped_area()函数,找到一段虚拟地址,范围是[addr, addr+len]。
用户进程一般不会指定addr,也就是由内核指定这个虚拟空间的首地址addr在哪里。
在函数do_mmap_pgoff()调用get_unmapped_area()之前会预指定addr,通过round_hint_to_min()实现,然后用这个预指定addr为参数调用get_unmapped_area()。
第二部分确定vma线性区的flags,针对文件、匿名,私有、共享有所不同。
第三部分是实际创建vma先行区,通过函数mmap_region()实现。
asmlinkage unsigned long sys_mmap (unsigned long addr, unsigned long len, int prot, int flags, int fd, long off) { if (offset_in_page(off) != 0) return -EINVAL; addr = sys_mmap_pgoff(addr, len, prot, flags, fd, off >> PAGE_SHIFT); if (!IS_ERR((void *) addr)) force_successful_syscall_return(); return addr; } SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, unsigned long, prot, unsigned long, flags, unsigned long, fd, unsigned long, pgoff) { struct file *file = NULL; unsigned long retval; if (!(flags & MAP_ANONYMOUS)) {------------------------------------------对非匿名文件映射的检查,必须能根据文件句柄找到struct file。 audit_mmap_fd(fd, flags); file = fget(fd); if (!file) return -EBADF; if (is_file_hugepages(file)) len = ALIGN(len, huge_page_size(hstate_file(file)));-------------根据file->f_op来判断是否是hugepage,然后进行hugepage页面对齐。 retval = -EINVAL; if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) goto out_fput; } else if (flags & MAP_HUGETLB) { struct user_struct *user = NULL; struct hstate *hs; hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); if (!hs) return -EINVAL; len = ALIGN(len, huge_page_size(hs)); /* * VM_NORESERVE is used because the reservations will be * taken when vm_ops->mmap() is called * A dummy user value is used because we are not locking * memory so no accounting is necessary */ file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE, &user, HUGETLB_ANONHUGE_INODE, (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); if (IS_ERR(file)) return PTR_ERR(file); } flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); out_fput: if (file) fput(file); return retval; } unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flag, unsigned long pgoff) { unsigned long ret; struct mm_struct *mm = current->mm; unsigned long populate; ret = security_mmap_file(file, prot, flag); if (!ret) { down_write(&mm->mmap_sem); ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, &populate); up_write(&mm->mmap_sem); if (populate) mm_populate(ret, populate); } return ret; } unsigned long do_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate) { struct mm_struct *mm = current->mm; *populate = 0; if (!len) return -EINVAL; if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) if (!(file && path_noexec(&file->f_path))) prot |= PROT_EXEC; if (!(flags & MAP_FIXED))-------------------------------------------------对于非MAP_FIXED,addr不能小于mmap_min_addr大小,如果小于则使用mmap_min_addr页对齐后的地址。 addr = round_hint_to_min(addr); /* Careful about overflows.. */ len = PAGE_ALIGN(len); if (!len)-----------------------------------------------------------------这里不是判断len是否为0,而是检查len是否溢出。 return -ENOMEM; /* offset overflow? */ if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)--------------------------------检查offset是否溢出 return -EOVERFLOW; /* Too many mappings? */ if (mm->map_count > sysctl_max_map_count)---------------------------------进程中mmap个数限制,超出返回ENOMEM错误。 return -ENOMEM; addr = get_unmapped_area(file, addr, len, pgoff, flags);------------------在创建新的ma区域之前首先寻找一块足够大小的空闲区域,本函数就是用于查找未映射的区域,返回值addr就是这段空间的首地址。 if (offset_in_page(addr)) return addr; vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;------------根据prot/flags以及mm->flags来得到vm_flags。 if (flags & MAP_LOCKED) if (!can_do_mlock()) return -EPERM; if (mlock_future_check(mm, vm_flags, len)) return -EAGAIN; if (file) {---------------------------------------------------------------文件映射情况处理,主要更新vm_flags。 struct inode *inode = file_inode(file); if (!file_mmap_ok(file, inode, pgoff, len)) return -EOVERFLOW; switch (flags & MAP_TYPE) { case MAP_SHARED:------------------------------------------------------共享文件映射 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) return -EACCES; if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) return -EACCES; if (locks_verify_locked(file)) return -EAGAIN; vm_flags |= VM_SHARED | VM_MAYSHARE; if (!(file->f_mode & FMODE_WRITE)) vm_flags &= ~(VM_MAYWRITE | VM_SHARED); case MAP_PRIVATE:-----------------------------------------------------私有文件映射 if (!(file->f_mode & FMODE_READ)) return -EACCES; if (path_noexec(&file->f_path)) { if (vm_flags & VM_EXEC) return -EPERM; vm_flags &= ~VM_MAYEXEC; } if (!file->f_op->mmap) return -ENODEV; if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) return -EINVAL; break; default: return -EINVAL; } } else {------------------------------------------------------------------匿名映射情况处理 switch (flags & MAP_TYPE) { case MAP_SHARED:------------------------------------------------------共享匿名映射 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) return -EINVAL; pgoff = 0;--------------------------------------------------------为什么为0? vm_flags |= VM_SHARED | VM_MAYSHARE; break; case MAP_PRIVATE:-----------------------------------------------------私有匿名映射 pgoff = addr >> PAGE_SHIFT; break; default: return -EINVAL; } } if (flags & MAP_NORESERVE) { /* We honor MAP_NORESERVE if allowed to overcommit */ if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) vm_flags |= VM_NORESERVE; /* hugetlb applies strict overcommit unless MAP_NORESERVE */ if (file && is_file_hugepages(file)) vm_flags |= VM_NORESERVE; } addr = mmap_region(file, addr, len, vm_flags, pgoff);--------------------实际创建vma if (!IS_ERR_VALUE(addr) && ((vm_flags & VM_LOCKED) || (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) *populate = len; return addr; }
get_unmapped_area()根据输入的addr,以及其它参数通过get_area()来找到一个满足条件的虚拟空间,返回这个虚拟空间的首地址。
get_area()是一个函数指针,有两种可能使用mm->get_unmapped_area()或者file->f_op->get_unmapped_area()。
unsigned long get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); unsigned long error = arch_mmap_check(addr, len, flags); if (error) return error; /* Careful about overflows.. */ if (len > TASK_SIZE) return -ENOMEM; get_area = current->mm->get_unmapped_area;------------使用mm_struct->get_unmapped_area()方法,即arch_get_unmapped_area()。 if (file && file->f_op->get_unmapped_area)------------如果是文件映射,并且该文件的file_operations定义了get_unmapped_area方法,那么使用它实现定位虚拟区间。 get_area = file->f_op->get_unmapped_area; addr = get_area(file, addr, len, pgoff, flags); if (IS_ERR_VALUE(addr)) return addr; if (addr > TASK_SIZE - len) return -ENOMEM; if (offset_in_page(addr)) return -EINVAL; addr = arch_rebalance_pgtables(addr, len); error = security_mmap_addr(addr); return error ? error : addr; }
看arch_get_unmapped_area()名字就知道,可能有各架构自己的实现函数。这里以平台无关的函数进行分析。
arch_get_unmapped_area()完成从低地址向高地址创建新的映射,而arch_get_unmapped_area_topdown()完成从高地址向低地址创建新的映射。
unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; int do_align = 0; int aliasing = cache_is_vipt_aliasing(); struct vm_unmapped_area_info info; if (aliasing) do_align = filp || (flags & MAP_SHARED); if (flags & MAP_FIXED) {------------------这里可以看出MAP_FIXED不参与选址,固定地址创建。 if (aliasing && flags & MAP_SHARED && (addr - (pgoff << PAGE_SHIFT)) & (SHMLBA - 1)) return -EINVAL; return addr; } if (len > TASK_SIZE) return -ENOMEM; if (addr) {--------------------------------当addr非0,表示制定了一个特定的优先选用地址,内核会检查该区域是否与现存区域重叠,有find_vma()完成查找功能。 if (do_align) addr = COLOUR_ALIGN(addr, pgoff); else addr = PAGE_ALIGN(addr); vma = find_vma(mm, addr); if (TASK_SIZE - len >= addr && (!vma || addr + len <= vm_start_gap(vma))) return addr; } info.flags = 0; info.length = len; info.low_limit = mm->mmap_base; info.high_limit = TASK_SIZE; info.align_mask = do_align ? (PAGE_MASK & (SHMLBA - 1)) : 0; info.align_offset = pgoff << PAGE_SHIFT; return vm_unmapped_area(&info);-----------当addr为空或者指定的优选地址不满足分配条件时,内核必须遍历进程中可用的区域,设法找到一个大小适当的空闲区域,vm_unmapped_area()完成实际的工作。 } static inline unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) { if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) return unmapped_area_topdown(info);--从高地址到低地址穿点映射。 else return unmapped_area(info);----------从低地址到高地址创建映射。 } unsigned long unmapped_area(struct vm_unmapped_area_info *info) { /* * We implement the search by looking for an rbtree node that * immediately follows a suitable gap. That is, * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; * - gap_end = vma->vm_start >= info->low_limit + length; * - gap_end - gap_start >= length */ struct mm_struct *mm = current->mm; struct vm_area_struct *vma; unsigned long length, low_limit, high_limit, gap_start, gap_end; /* Adjust search length to account for worst case alignment overhead */ length = info->length + info->align_mask; if (length < info->length) return -ENOMEM; /* Adjust search limits by the desired length */ if (info->high_limit < length) return -ENOMEM; high_limit = info->high_limit - length; if (info->low_limit > high_limit) return -ENOMEM; low_limit = info->low_limit + length; /* Check if rbtree root looks promising */ if (RB_EMPTY_ROOT(&mm->mm_rb)) goto check_highest; vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); if (vma->rb_subtree_gap < length) goto check_highest; while (true) { /* Visit left subtree if it looks promising */ gap_end = vm_start_gap(vma);----------------------------------先从低地址开始查询。 if (gap_end >= low_limit && vma->vm_rb.rb_left) { struct vm_area_struct *left = rb_entry(vma->vm_rb.rb_left, struct vm_area_struct, vm_rb); if (left->rb_subtree_gap >= length) { vma = left; continue; } } gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;------当前结点rb_subtree_gap已经是最后一个可能满足这次分配。 check_current: /* Check if current node has a suitable gap */ if (gap_start > high_limit) return -ENOMEM; if (gap_end >= low_limit && gap_end > gap_start && gap_end - gap_start >= length) goto found; /* Visit right subtree if it looks promising */ if (vma->vm_rb.rb_right) { struct vm_area_struct *right = rb_entry(vma->vm_rb.rb_right, struct vm_area_struct, vm_rb); if (right->rb_subtree_gap >= length) { vma = right; continue; } } /* Go back up the rbtree to find next candidate node */ while (true) { struct rb_node *prev = &vma->vm_rb; if (!rb_parent(prev)) goto check_highest; vma = rb_entry(rb_parent(prev), struct vm_area_struct, vm_rb); if (prev == vma->vm_rb.rb_left) { gap_start = vm_end_gap(vma->vm_prev); gap_end = vm_start_gap(vma); goto check_current; } } } check_highest: /* Check highest gap, which does not precede any rbtree node */ gap_start = mm->highest_vm_end; gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ if (gap_start > high_limit) return -ENOMEM; found: /* We found a suitable gap. Clip it with the original low_limit. */ if (gap_start < info->low_limit) gap_start = info->low_limit; /* Adjust gap address to the desired alignment */ gap_start += (info->align_offset - gap_start) & info->align_mask; VM_BUG_ON(gap_start + info->length > info->high_limit); VM_BUG_ON(gap_start + info->length > gap_end); return gap_start; }
mmap_region()首先调用find_vma_links()查找是否已有vma线性区包含addr,如果有调用do_munmap()把这个vma干掉。
Linux不希望vma和vma之间存在空洞,只要新创建vma的flags属性和前面或者后面vma仙童,就尝试合并成一个新的vma,减少slab缓存消耗量,同时也减少了空洞浪费。
如果无法合并,那么只好新创建vma并对vma结构体初始化先关成员;根据vma是否有页锁定标志(VM_LOCKED),决定是否立即分配物理页。
最后将新建的vma插入进程空间vma红黑树中,并返回addr。
unsigned long mmap_region(struct file *file, unsigned long addr, unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma, *prev; int error; struct rb_node **rb_link, *rb_parent; unsigned long charged = 0; /* Check against address space limit. */ if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {--------------------检查当前total_vm+len是否查过RLIMIT_AS,确保虚拟映射可以进行。 unsigned long nr_pages; if (!(vm_flags & MAP_FIXED)) return -ENOMEM; nr_pages = count_vma_pages_range(mm, addr, addr + len); if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages)) return -ENOMEM; } while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {-----------------------------------遍历该进程已有的vma红黑树,如果找到vma覆盖[addr, end]区域,那么返回0,表示找到。如果覆盖已有的vma区域,返回ENOMEM。 if (do_munmap(mm, addr, len))------------------------------存在覆盖已有区域的情况,那么尝试取munmap这块区域。如果munmap成功返回0,不成功则mmap_region()失败。 return -ENOMEM; } if (accountable_mapping(file, vm_flags)) { charged = len >> PAGE_SHIFT; if (security_vm_enough_memory_mm(mm, charged)) return -ENOMEM; vm_flags |= VM_ACCOUNT; } vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);-----------------------至此表示已经可以找到合适的vma区域,原有映射是否可以被新的映射复用,减少因为vma导致的slab消耗和虚拟内存的空洞。 if (vma) goto out; vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);----------------------在没有找到的情况下,新建一个vma。 if (!vma) { error = -ENOMEM; goto unacct_error; } vma->vm_mm = mm;---------------------------------------------------------初始化vma数据 vma->vm_start = addr; vma->vm_end = addr + len; vma->vm_flags = vm_flags; vma->vm_page_prot = vm_get_page_prot(vm_flags);---------------------------设置vma区域内页面属性。 vma->vm_pgoff = pgoff; INIT_LIST_HEAD(&vma->anon_vma_chain); if (file) {--------------------------------------------------------------如果是文件映射 if (vm_flags & VM_DENYWRITE) { error = deny_write_access(file); if (error) goto free_vma; } if (vm_flags & VM_SHARED) { error = mapping_map_writable(file->f_mapping); if (error) goto allow_write_and_free_vma; } vma->vm_file = get_file(file); error = file->f_op->mmap(file, vma);---------------------------------Linux 内核 内存管理内存管理系统调用 ④ ( 代码示例 | mmap 创建内存映射 | munmap 删除内存映射 )Linux 内核 内存管理mmap 系统调用源码分析 ① ( mmap 与 mmap2 系统调用 | Linux 内核中的 mmap 系统调用源码 )
Linux内存管理之mmap详解 (可用于android底层内存调试)
Linux 内核 内存管理内存管理系统调用 ① ( mmap 创建内存映射 | munmap 删除内存映射 | mprotect 设置虚拟内存区域访问权限 )