python pandas 怎么填补某一列的缺失值

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python pandas 怎么填补某一列的缺失值相关的知识,希望对你有一定的参考价值。

df["你要填补的列名"].fillna(“填补的值”)
df为你数据框名称 ,你的不一定是df
参考技术A 如果你要添加一千条记录,不要一条一条的concate。 可以试着每一百条组成一个小的dataframe,分十次粘上去,会快一点

根据 pandas 或 numpy 中某一列的值创建新行

【中文标题】根据 pandas 或 numpy 中某一列的值创建新行【英文标题】:create new rows based the values of one of the column in pandas or numpy 【发布时间】:2020-08-09 23:30:54 【问题描述】:

我有一个如下所示的数据框。这是医生预约数据。

B_ID   No_Show   Session  slot_num  Cumulative_no_show
    1     0.4       S1        1       0.4   
    2     0.3       S1        2       0.7      
    3     0.8       S1        3       1.5        
    4     0.3       S1        4       1.8       
    5     0.6       S1        5       2.4         
    6     0.8       S1        6       3.2       
    7     0.9       S1        7       4.1        
    8     0.4       S1        8       4.5   
    9     0.6       S1        9       5.1     
    12    0.9       S2        1       0.9    
    13    0.5       S2        2       1.4       
    14    0.3       S2        3       1.7        
    15    0.7       S2        4       2.4         
    20    0.7       S2        5       3.1          
    16    0.6       S2        6       3.7       
    17    0.8       S2        7       4.5        
    19    0.3       S2        8       4.8   

当 u_cumulative > 0.8 时,在 No_Show = 0.0 的下方创建一个新行,其 Session 和 slot_num 应与前一个相同,并通过从前一个减去 1 创建一个名为 u_cumulative 的新列。

预期输出:

B_ID   No_Show   Session  slot_num  Cumulative_no_show    u_cumulative
    1     0.4       S1        1       0.4                 0.4
    2     0.3       S1        2       0.7                 0.7
    3     0.8       S1        3       1.5                 1.5
walkin1   0.0       S1        3       1.5                 0.5
    4     0.3       S1        4       1.8                 0.8      
    5     0.6       S1        5       2.4                 1.4
walkin2   0.0       S1        5       2.4                 0.4    
    6     0.8       S1        6       3.2                 1.2
walkin3   0.0       S1        6       3.2                 0.2      
    7     0.9       S1        7       4.1                 1.1
walkin4   0.0       S1        7       4.1                 0.1               
    8     0.4       S1        8       4.5                 0.5   
    9     0.6       S1        9       5.1                 1.1
walkin5   0.0       S1        7       5.1                 0.1
    12    0.9       S2        1       0.9                 0.9
walkin1   0.0       S2        1       0.9                -0.1
    13    0.5       S2        2       1.4                 0.4    
    14    0.3       S2        3       1.7                 0.7       
    15    0.7       S2        4       2.4                 1.4
walkin2   0.0       S2        4       2.4                 0.4      
    20    0.7       S2        5       3.1                 1.1
walkin3   0.0       S2        5       3.1                 0.1       
    16    0.6       S2        6       3.7                 0.7                    
    17    0.8       S2        7       4.5                 1.5
walkin4   0.0       S2        7       4.5                 0.5       
    19    0.3       S2        8       4.8                 0.8

我尝试在下面计算 u_cumulative

def create_u_columns (ser):
    arr_ns = ser.to_numpy()
    arr_sn = np.ones(len(ser))
    for i in range(len(arr_ns)-1):
        if arr_ns[i]>0.6:
            # remove 1 to u_no_show
            arr_ns[i+1:] -= 1
        else:
            # increment u_slot_num
            arr_sn[i+1:] += 1
    #return a dataframe with both columns
    return pd.DataFrame('U_slot_num':arr_sn, 'U_No_show': arr_ns, index=ser.index)

df[['U_slot_num', 'u_cumulative']] = df.groupby(['Session'])['Cumulative_No_show'].apply(create_u_columns)

但我无法根据上述逻辑创建新行。

【问题讨论】:

我想你的意思是如果 u_cumulative > 0.8 而不是 Cumulative_no_show > 0.8 @NYCCoder 是的,你是对的,感谢您指出.. 已编辑 简单来说,如何计算u_cumulative? @wwnde 何时 Cumulative_no_show 超过 0.8 添加新行从累积无显示中减去 1 使其成为 u_cumulative 【参考方案1】:

你可以通过创建一个计数列来稍微修改函数来添加后面的行:

def create_u_columns (ser):
    l_index = []
    arr_ns = ser.to_numpy()
    # array for latter insert
    arr_idx = np.zeros(len(ser), dtype=int)
    walkin_id = 1
    for i in range(len(arr_ns)-1):
        if arr_ns[i]>0.8:
            # remove 1 to u_no_show
            arr_ns[i+1:] -= 1
            # increment later idx to add
            arr_idx[i] = walkin_id
            walkin_id +=1
    #return a dataframe with both columns
    return pd.DataFrame('u_cumulative': arr_ns, 'mask_idx':arr_idx, index=ser.index)

df[['u_cumulative', 'mask_idx']]= df.groupby(['Session'])['Cumulative_no_show'].apply(create_u_columns)

现在您需要处理需要添加的行:

# select the rows
df_toAdd = df.loc[df['mask_idx'].astype(bool), :].copy()
# replace the values as wanted
df_toAdd['No_Show'] = 0
df_toAdd['B_ID'] = 'walkin'+df_toAdd['mask_idx'].astype(str)
df_toAdd['u_cumulative'] -= 1
# add 0.5 to index for later sort
df_toAdd.index += 0.5 

现在您只需要将 concat 这个数据框添加到原始数据框,sort_indexreset_index 如果需要获得更干净的数据框,drop 之前创建的额外列

new_df = pd.concat([df,df_toAdd]).sort_index()\
           .reset_index(drop=True).drop('mask_idx', axis=1)

print (new_df)
       B_ID  No_Show Session  slot_num  Cumulative_no_show  u_cumulative
0         1      0.4      S1         1                 0.4           0.4
1         2      0.3      S1         2                 0.7           0.7
2         3      0.8      S1         3                 1.5           1.5
3   walkin1      0.0      S1         3                 1.5           0.5
4         4      0.3      S1         4                 1.8           0.8
5         5      0.6      S1         5                 2.4           1.4
6   walkin2      0.0      S1         5                 2.4           0.4
7         6      0.8      S1         6                 3.2           1.2
8   walkin3      0.0      S1         6                 3.2           0.2
9         7      0.9      S1         7                 4.1           1.1
10  walkin4      0.0      S1         7                 4.1           0.1
11        8      0.4      S1         8                 4.5           0.5
12        9      0.6      S1         9                 5.1           1.1
13       12      0.9      S2         1                 0.9           0.9
14  walkin1      0.0      S2         1                 0.9          -0.1
15       13      0.5      S2         2                 1.4           0.4
16       14      0.3      S2         3                 1.7           0.7
17       15      0.7      S2         4                 2.4           1.4
18  walkin2      0.0      S2         4                 2.4           0.4
19       20      0.7      S2         5                 3.1           1.1
20  walkin3      0.0      S2         5                 3.1           0.1
21       16      0.6      S2         6                 3.7           0.7
22       17      0.8      S2         7                 4.5           1.5
23  walkin4      0.0      S2         7                 4.5           0.5
24       19      0.3      S2         8                 4.8           0.8

【讨论】:

请调查这个问题。 ***.com/questions/61496685/… 与上述问题类似,稍作修改。 在您免费期间,请查看以下问题。与上述问题类似,稍作修改。 ***.com/questions/62306761/…

以上是关于python pandas 怎么填补某一列的缺失值的主要内容,如果未能解决你的问题,请参考以下文章

根据 pandas 或 numpy 中某一列的值创建新行

pandas dataframe缺失值(np.nan)处理:识别缺失情况删除0值填补均值填补中位数填补加缺失标签插值填充详解及实例

关于pandas处理数据,怎么提取某一列的部分数字

python数据预处理

Pandas:如何修改DataFrame中某一列的值?

python - Pandas - FillNa 与另一个具有相似列的非空行