怎么培养数据分析的能力
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了怎么培养数据分析的能力相关的知识,希望对你有一定的参考价值。
数据分析需要哪些思维/能力/知识呢?
比如,数据分析思维、结构化思维、公式化思维、学法体系的思维.......这些思维帮助你,即使碰到自己不熟悉的问题,也能从一定的角度切入分析并保持清晰的逻辑;
一定的业务理解能力,能理解业务背后的商业思路。只有理解问题,才能转换成数据分析的问题,才知道如何设定分析目标并进行分析;
基础理论知识:数理统计、模型原理、近期市场的调研等;
常规分析工具的使用:常用办公软件(Excel、PPT、思维导图)、数据库、统计分析工具、数据挖掘等;
数据报告和数据可视化的能力。数据分析得再好,如果不能以简洁易懂的方式“表达”,成效也会大打折扣。
等等等,诸如此类的基本知识能力贮备......
那么想要提升这些能力该做点什么呢?下面具体来说说怎么做能把这些基础实力打好。
从分析理论和工具实践着手
1、分析理论
分析理论包括:明确业务场景、确定分析目标、构建分析体系和梳理核心指标。
我们要做的就是,首先明确是什么样的业务场景,不同的业务,分析体系也随之不同;然后,结合业务问题确定分析的目标,列出核心指标,再搜集整理所需要的数据。
推荐书籍:《数据化管理》、《决战大数据 》
数据分析的几个步骤:
(1)数据获取
数据获取往往看似简单,但是它需要分析者对问题进行商业理解,即转化成数据问题来解决,如,需要哪些数据,从哪些角度来分析等,在界定了这些问题后,再进行数据采集。
此环节,需要数据分析师具备结构化的逻辑思维。
推荐书籍:《金字塔原理》、麦肯锡三部曲:麦肯锡意识、工具、方法
推荐工具:思维导图工具(Xmind百度脑图等)
(2)数据处理
数据的处理需要掌握有效率的工具:
Excel及高端技能:
基本操作、函数公式、数据透视表、VBA程序开发。
我一般会先过一遍基础,知道什么是什么,然后找几个case练习。多逛逛excelhome论坛,平常多思考如何用excel来解决问题,善用插件,还有记得保存。
专业的报表工具:
(成规模的企业会用)日常做报表可以设计一个通用模板,只要会写SQL就可上手。
相比excel做报表,这种工具开发的技术要求较低,能很快地开发常规报表、动态报表。
数据库的使用:
熟练掌握SQL语言(很重要!!!),常见的有Oracle、SQL sever、My SQL等。
学习流行的hadoop之类的分布式数据库来提升个人能力,对求职等都会有所帮助。
(3)分析数据
分析数据往往需要各类统计分析模型,如关联规则、聚类、分类、预测模型等等。
因此,熟练掌握一些统计分析工具不可免:
lPSS系列:老牌的统计分析软件,SPSS Statistics(偏统计功能、市场研究)、SPSS Modeler(偏数据挖掘),不用编程,易学。
SAS:经典挖掘软件,需要编程。
R:开源软件,新流行,对非结构化数据处理效率上更高,需编程。
各类BI工具:Tableau、PowerBI、FineBI,对于处理好的数据可作自由的可视化分析,图表效果惊人。
推荐书籍:
《说菜鸟不会数据分析》系列,入门级书,初学者最适。
《数据挖掘与数据化运营实战,思路、方法、技巧与应用》,内容很系统很全面。
《市场研究定量分析方法与应用》,简明等编著,中国人民大学出版社。
(4)数据可视化呈现
很多数据分析工具已经涵盖了数据可视化部分,这时就只需要把数据结果进行有效的呈现和演讲汇报即可,可用word\\PPT\\H5等方式展现。
2、工具实践
(1)对于入门小白,建议从Excel工具入手,这里以Excel为例:
学习Excel是一个循序渐进的过程:
基础的:简单的表格数据处理、打印、查询、筛选、排序
函数和公式:常用函数、高级数据计算、数组公式、多维引用、function
可视化图表:图形图示展示、高级图表、图表插件
数据透视表、VBA程序开发......
多逛逛excelhome论坛,平常多思考如何用excel来解决问题,学习用各种插件,对能够熟练使用Excel都有帮助。
其中,函数和数据透视表是两个重点。
函数
制作数据模板必须掌握的excel函数:
日期函数:day,month,year,date,today,weekday,weeknum 日期函数是做分析模板的必备,可以用日期函数来控制数据的展示,查询指定时间段的数据。
数学函数:product,rand,randbetween,round,sum,sumif,sumifs,sumproduct
统计函数:large,small,max,min,median,mode,rank,count,countif,countifs,average,averageif,averageifs 统计函数在数据分析中具有举足轻重的作用,求平均值,最大值,中位数,众位数都用得到。
查找和引用函数:choose,match,index,indirect,column,row,vlookup,hlookup,lookup,offset,getpivotdata 这几个函数的作用不用多说,特别是vlookup,不会这个函数基本上复杂报表寸步难行。
文本函数:find,search,text,value,concatenate,left,right,mid,len 这几个函数多半用在数据整理阶段使用。
逻辑函数:and,or,false,true,if,iferror
(以上学会,基本能秒杀90%的办公室白领!)
数据透视表
数据透视表的作用是把大量数据生成可交互的报表,它具有这样一些重要功能:分类汇总、取平均、最大最小值、自动排序、自动筛选、自动分组;可分析占比、同比、环比、定比、自定义公式等
现实中,取数或报表+EXCEL+PPT似乎还是主流形式。
工具上,无论是业务人员还是分析人员,都可以通过自动取数工具或者BI工具来制作报表,减少重复操作的时间。
其次,增加与业务人员的沟通,充分了解业务需求,当你的业务水平和他们差不多甚至更高时,自然而然知道他们一言两语背后真实的需求是什么了。
最后,站在更高角度上,报表的基本粒度就是指标,可梳理出企业的基本指标体系,从经营分析的角度去做报表,把报表的工作标准化,降低报表的冗余,避免动不动就做一张报表。标准化包括指标分类,指标命名,业务口径,技术口径,实现方式等等。其实,最终目的是实现报表数据一致性,减少重复报表开发,降低系统开销的战略性举措。
在业余时间,可以多补充数理统计知识,学习R、Python语言,学习常用的挖掘模型,往高级分析师路上发展!
一起加油鸭!
以上,就是今天的分享,数据分析能力听起来很大很抽象,虽是软实力但却是行业的硬要求!量变引起质变,一步步来,才能做到触类旁通,做起项目才会越来越顺手。
数据分析四个字听起来是一项很专业的能力,其实不然,像我,其实从来没有系统学过任何数据分析的能力,甚至连相关的书都没有看过,但是现在却在一个内容公司的数据部门,每天写数据分析报告,联系专业的第三方数据公司为公司的内容产品做一些数据调研服务。
如果让我来说如何在业余时间,学习自己数据分析的能力,大概会有如下三点:
1、对数据敏感,比如说好了,我所在的行业是内容行业,数据分析里有一项很重要的能力是竞品分析,所以首先你要对竞品敏感,以前做互联网的时候我做旅行的app,就会多看看携程啊,马蜂窝啊这些app每天都在更新什么,相关数据什么样,前台一般会展示说卖得最好的是什么,卖出多少件一般也会展示;现在在内容行业就是拼命追综艺,并且最基础的要观察这些竞品的播放量数据,不光是正片,还有花絮,这样的观察,让你可以首先心里有数。
2、结构化分析的能力,一般数据分析都会分为好几部,最基本的前台数据列出来,然后同期的对比,比如一个节目都是每周六播,上周六和这周六是不是差不多,是不是有波峰和谷值,你做一个数据分析你分为哪几步,写出前台数据,然后竞品分析,然后分析数据背后的原因,之类之类,数据分析一般的步骤其实都差不多,虽然会因为项目的不同有所差别。
3、深入分析的能力,这个指的一般都是通过数我们要去观察数的变动背后的原因,还是刚才那个例子,比如奇葩说最高一期是多少播放量,最低一期是多少,那么这两期有什么差别,比如嘉宾,比如辩手,比如话题,把可能导致数据差异的因子找出来,然后去排除分析。
参考技术B一、五种必备素质
态度严谨负责
严谨负责是数据分析师的必备素质之一,只有本着严谨负责的态度,才能保证数据的客观、准确。在企业里,数据分析师可以说是企业的医生,他们通过对企业运营数据的分析,为企业寻找症结及问题。一名合格的数据分析师,应具有严谨、负责的态度,保持中立立场,客观评价企业发展过程中存在的问题,为决策层提供有效的参考依据;不应受其他因素影响而更改数据,隐瞒企业存在的问题,这样做对企业发展是非常不利的,甚至会造成严重的后果。而且,对数据分析师自身来说,也是前途尽毁,从此以后所做的数据分析结果都将受到质疑,因为你已经不再是可信赖的人,在同事、领导、客户面前已经失去了信任。所以,作为一名数据分析师就必须持有严谨负责的态度,这也是最基本的职业道德。
2、好奇心强烈
好奇心人皆有之,但是作为数据分析师,这份好奇心就应该更强烈,要积极主动地发现和挖掘隐藏在数据内部的真相。在数据分析师的脑子里,应该充满着无数个“为什么”,为什么是这样的结果,为什么不是那样的结果,导致这个结果的原因是什么,为什么结果不是预期的那样等等。这一系列问题都要在进行数据分析时提出来,并且通过数据分析,给自己一个满意的答案。越是优秀的数据分析师,好奇心也越不容易满足,回答了一个问题,又会抛出一个新的问题,继续研究下去。只有拥有了这样一种刨根问底的精神,才会对数据和结论保持敏感,继而顺藤摸瓜,找出数据背后的真相。
3、逻辑思维清晰
除了一颗探索真相的好奇心,数据分析师还需要具备缜密的思维和清晰的逻辑推理能力。我记得有位大师说过:结构为王。何谓结构,结构就是我们常说的逻辑,不论说话还是写文章,都要有条理,有目的,不可眉毛胡子一把抓,不分主次。 通常从事数据分析时所面对的商业问题都是较为复杂的,我们要考虑错综复杂的成因,分析所面对的各种复杂的环境因素,并在若干发展可能性中选择一个最优的方向。这就需要我们对事实有足够的了解,同时也需要我们能真正理清问题的整体以及局部的结构,在深度思考后,理清结构中相互的逻辑关系,只有这样才能真正客观地、科学地找到商业问题的答案。
4、擅长模仿
在做数据分析时,有自己的想法固然重要,但是“前车之鉴”也是非常有必要学习的,它能帮助数据分析师迅速地成长,因此,模仿是快速提高学习成果的有效方法。这里说的模仿主要是参考他人优秀的分析思路和方法,而并不是说直接“照搬”。成功的模仿需要领会他人方法精髓,理解其分析原理,透过表面达到实质。万变不离其宗,要善于将这些精华转化为自己的知识,否则,只能是“一直在模仿,从未超越过”。
5、勇于创新
通过模仿可以借鉴他人的成功经验,但模仿的时间不宜太长,并且建议每次模仿后都要进行总结,提出可以改进的地方,甚至要有所创新。创新是一个优秀数据分析师应具备的精神,只有不断的创新,才能提高自己的分析水平,使自己站在更高的角度来分析问题,为整个研究领域乃至社会带来更多的价值。现在的分析方法和研究课题千变万化,墨守成规是无法很好地解决所面临的新问题的。 听到这里,小白就掰着手指头算自己符合几条优秀数据分析师的素质和能力。
二、零售行业的数据分析怎么做?
数据分析是从公司现有数据中提取有价值的信息,这个价值信息要依据公司行业而定发展前景不错,现在企业数据量越来越多,但一直没有加以利用,现在都越来越重视数据分析,但有经验的数据分析师却很少,所以人才缺口还很大
三、需要具备哪些专业知识?
1、数据分析理论基础-统计学、概率论
2、数据分析工具-excel、SPSS、SAS/R
3、公司业务的理解(依公司而定)
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
简单分析一下,详情如图所示
参考技术D 不知道你的知识水平到什么层次。不过,要做数据分析这方面的工作或有这方面的兴趣而要把它做好,是要很高的数理知识水平。基本的专业知识:概率与数理统计,随机过程等。如果你只是想做到平时你经常听到人家说的那种数据分析,很简单,书店里买本这方面的书,几天就学会了,高中生都可以做。大数据数据分析-数据分析师八大能力培养,解决业务问题和管理数据开发
Python、R、Hadoop、Java、Spark、C++、SQL、Linux、Hive等数据科学工具和编程语言是企业对数据人才的一致要求,一些如统计分析、数据结构以及决策树理论概念和算法也在企业对数据人才的要求之列,各位想找大数据相关工作,可留点心呐!好好学理论,认真练技术,高薪不再远。R和Python是数据科学从业者两把利剑,
数据分析师八大能力培养,解决业务问题和管理数据开发项目数据分析师八大能力培养,解决业务问题和管理数据开发项目数据分析师八大能力培养,解决业务问题和管理数据开发项目数据分析师八大能力培养,解决业务问题和管理数据开发项目数据分析师八大能力培养,解决业务问题和管理数据开发项目数据分析师八大能力培养,解决业务问题和管理数据开发项目数据分析师八大能力培养,解决业务问题和管理数据开发项目
以上是关于怎么培养数据分析的能力的主要内容,如果未能解决你的问题,请参考以下文章