[leetcode] Range Sum Query - Immutable

Posted Lin.B

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[leetcode] Range Sum Query - Immutable相关的知识,希望对你有一定的参考价值。

Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.

Example:

Given nums = [-2, 0, 3, -5, 2, -1]

sumRange(0, 2) -> 1
sumRange(2, 5) -> -1
sumRange(0, 5) -> -3

 

Note:

  1. You may assume that the array does not change.
  2. There are many calls to sumRange function.

 分析:翻译一下,给定一个数组nums,要求找(i,j)位置中间的和,也就是nums[i]+...+nums[j]。最差的方法当然是一个一个求和,但是因为这个题目很巧妙,他在一个题目中设计了很多用例,也就是说很多计算结果会被重复用到,因此需要不能单纯的来一个用例就求和一次,要保存中间结果。很容易就想到用动态规划来做数组的求和,维护一个dp数组,其中dp[i]表示从0到第i位置的和,状态转移方程也很容易就得到了:dp[i] = dp[i-1]+nums[i],那么求(i,j)的和就是dp[j]-dp[i-1]就好了。代码如下:
 1 class NumArray {
 2     int[] dp;
 3     public NumArray(int[] nums) {
 4         if ( nums == null || nums.length == 0 ) return ;
 5         dp = new int[nums.length];
 6         dp[0]=nums[0];
 7         for ( int i = 1 ; i < nums.length ; i ++ ){
 8             dp[i] = dp[i-1]+nums[i];
 9         }
10     }
11 
12     public int sumRange(int i, int j) {
13         return i==0?dp[j]:dp[j]-dp[i-1];
14     }
15 }

      这里要注意第4行。运行时间125ms,击败96.34%。

      感觉还是有优化的空间的,因为这种方法考虑太多的特殊情况,能不能想办法将特殊情况也总结进去。看了一下solution,神奇的发现用一个长度为nums.length+1的数组就可以避免两种特殊情况的讨论了。代码如下:

 1 private int[] sum;
 2 
 3 public NumArray(int[] nums) {
 4     sum = new int[nums.length + 1];
 5     for (int i = 0; i < nums.length; i++) {
 6         sum[i + 1] = sum[i] + nums[i];
 7     }
 8 }
 9 
10 public int sumRange(int i, int j) {
11     return sum[j + 1] - sum[i];
12 }

      设计很巧妙,可以学习。

以上是关于[leetcode] Range Sum Query - Immutable的主要内容,如果未能解决你的问题,请参考以下文章

LeetCode 303. Range Sum Query - Immutable

leetcode笔记:Range Sum Query 2D - Immutable

leetcode@ [327] Count of Range Sum (Binary Search)

[LeetCode] Count of Range Sum 区间和计数

[LeetCode]Range Sum Query

LeetCode 303. Range Sum Query - Immutable