什么是数组的维度,python 的ndim的使用
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了什么是数组的维度,python 的ndim的使用相关的知识,希望对你有一定的参考价值。
数组的维度就是一个数组中的某个元素,当用数组下标表示的时候,需要用几个数字来表示才能唯一确定这个元素,这个数组就是几维。numpy中直接用 * 即可表示数与向量的乘法,参考python 2.7的一个例子:inport numpy as np a = np.array([1,2,3,4]) # 向量 b = 5 # 数 print a*b ++++++++++++ [5,10,15,20]
NumPy数组的下标从0开始。
同一个NumPy数组中所有元素的类型必须是相同的。
在详细介绍NumPy数组之前。先详细介绍下NumPy数组的基本属性。NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。
比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是NumPy中的轴(axes),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
更新
目前我的工作是将NumPy引入到Pyston中(一款Dropbox实现的Python编译器/解释器)。在工作过程中,我深入接触了NumPy源码,了解其实现并提交了PR修复NumPy的bug。在与NumPy源码以及NumPy开发者打交道的过程中,我发现当今中文NumPy教程大部分都是翻译或参考英文文档,因此导致了许多疏漏。比如NumPy数组中的broadcast功能,几乎所有中文文档都翻译为“广播”。而NumPy的开发者之一,回复到“broadcast is a compound -- native English speakers can see that it's " broad" + "cast" = "cast (scatter, distribute) broadly, I guess "cast (scatter, distribute) broadly" probably is closer to the meaning(NumPy中的含义)"。有鉴于此,我打算启动一个项目,以我对NumPy使用以及源码层面的了解编写一个系列的教程。
地址随后会更新。CSDN的排版(列表)怎么显示不正常了。。。
NumPy数组
NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:
实际的数据
描述这些数据的元数据
大部分操作仅针对于元数据,而不改变底层实际的数据。
关于NumPy数组有几点必需了解的:
NumPy数组的下标从0开始。
同一个NumPy数组中所有元素的类型必须是相同的。
NumPy数组属性
在详细介绍NumPy数组之前。先详细介绍下NumPy数组的基本属性。NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是NumPy中的轴(axes),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
NumPy的数组中比较重要ndarray对象属性有:
ndarray.ndim:数组的维数(即数组轴的个数),等于秩。最常见的为二维数组(矩阵)。
ndarray.shape:数组的维度。为一个表示数组在每个维度上大小的整数元组。例如二维数组中,表示数组的“行数”和“列数”。ndarray.shape返回一个元组,这个元组的长度就是维度的数目,即ndim属性。
ndarray.size:数组元素的总个数,等于shape属性中元组元素的乘积。
ndarray.dtype:表示数组中元素类型的对象,可使用标准的Python类型创建或指定dtype。另外也可使用前一篇文章中介绍的NumPy提供的数据类型。
ndarray.itemsize:数组中每个元素的字节大小。例如,一个元素类型为float64的数组itemsiz属性值为8(float64占用64个bits,每个字节长度为8,所以64/8,占用8个字节),又如,一个元素类型为complex32的数组item属性为4(32/8)。
ndarray.data:包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。
创建数组
先来介绍创建数组。创建数组的方法有很多。如可以使用array函数从常规的Python列表和元组创造数组。所创建的数组类型由原序列中的元素类型推导而来。 参考技术B
你的arr2的数据是[list([1, 2, 3, 4]) list([3, 1, 2, 22, 33])], 之所ndim属性是1,是因为你传入的data2里面包的两个数组长度不一致,所以numpy无法将data2转换为二维数组,在你的第二个例子中也验证了这一点。关于ndim的含义,我就不赘述了,@浩明的回答说的很明白了。
numpy
一、numpy概述
numpy(Numerical Python)提供了python对多维数组对象的支持:ndarray,具有矢量运算能力,快速、节省空间。numpy支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
二、创建ndarray数组
ndarray:N维数组对象(矩阵),所有元素必须是相同类型。
ndarray属性:ndim属性,表示维度个数;shape属性,表示各维度大小;dtype属性,表示数据类型。
创建ndarray数组函数:
代码示例:
# -*- coding: utf-8 -*-
import numpy;
print ‘使用列表生成一维数组‘
data = [1,2,3,4,5,6]
x = numpy.array(data)
print x #打印数组
print x.dtype #打印数组元素的类型
print ‘使用列表生成二维数组‘
data = [[1,2],[3,4],[5,6]]
x = numpy.array(data)
print x #打印数组
print x.ndim #打印数组的维度
print x.shape #打印数组各个维度的长度。shape是一个元组
print ‘使用zero/ones/empty创建数组:根据shape来创建‘
x = numpy.zeros(6) #创建一维长度为6的,元素都是0一维数组
print x
x = numpy.zeros((2,3)) #创建一维长度为2,二维长度为3的二维0数组
print x
x = numpy.ones((2,3)) #创建一维长度为2,二维长度为3的二维1数组
print x
x = numpy.empty((3,3)) #创建一维长度为2,二维长度为3,未初始化的二维数组
print x
print ‘使用arrange生成连续元素‘
print numpy.arange(6) # [0,1,2,3,4,5,] 开区间
print numpy.arange(0,6,2) # [0, 2,4]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
三、指定ndarray数组元素的类型
NumPy数据类型:
代码示例:
print ‘生成指定元素类型的数组:设置dtype属性‘
x = numpy.array([1,2.6,3],dtype = numpy.int64)
print x # 元素类型为int64
print x.dtype
x = numpy.array([1,2,3],dtype = numpy.float64)
print x # 元素类型为float64
print x.dtype
print ‘使用astype复制数组,并转换类型‘
x = numpy.array([1,2.6,3],dtype = numpy.float64)
y = x.astype(numpy.int32)
print y # [1 2 3]
print x # [ 1. 2.6 3. ]
z = y.astype(numpy.float64)
print z # [ 1. 2. 3.]
print ‘将字符串元素转换为数值元素‘
x = numpy.array([‘1‘,‘2‘,‘3‘],dtype = numpy.string_)
y = x.astype(numpy.int32)
print x # [‘1‘ ‘2‘ ‘3‘]
print y # [1 2 3] 若转换失败会抛出异常
print ‘使用其他数组的数据类型作为参数‘
x = numpy.array([ 1., 2.6,3. ],dtype = numpy.float32);
y = numpy.arange(3,dtype=numpy.int32);
print y # [0 1 2]
print y.astype(x.dtype) # [ 0. 1. 2.]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
四、ndarray的矢量化计算
矢量运算:相同大小的数组键间的运算应用在元素上
矢量和标量运算:“广播”— 将标量“广播”到各个元素
代码示例:
print ‘ndarray数组与标量/数组的运算‘
x = numpy.array([1,2,3])
print x*2 # [2 4 6]
print x>2 # [False False True]
y = numpy.array([3,4,5])
print x+y # [4 6 8]
print x>y # [False False False]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
五、ndarray数组的基本索引和切片
一维数组的索引:与Python的列表索引功能相似
多维数组的索引:
- arr[r1:r2, c1:c2]
- arr[1,1] 等价 arr[1][1]
- [:] 代表某个维度的数据
代码示例:
print ‘ndarray的基本索引‘
x = numpy.array([[1,2],[3,4],[5,6]])
print x[0] # [1,2]
print x[0][1] # 2,普通python数组的索引
print x[0,1] # 同x[0][1],ndarray数组的索引
x = numpy.array([[[1, 2], [3,4]], [[5, 6], [7,8]]])
print x[0] # [[1 2],[3 4]]
y = x[0].copy() # 生成一个副本
z = x[0] # 未生成一个副本
print y # [[1 2],[3 4]]
print y[0,0] # 1
y[0,0] = 0
z[0,0] = -1
print y # [[0 2],[3 4]]
print x[0] # [[-1 2],[3 4]]
print z # [[-1 2],[3 4]]
print ‘ndarray的切片‘
x = numpy.array([1,2,3,4,5])
print x[1:3] # [2,3] 右边开区间
print x[:3] # [1,2,3] 左边默认为 0
print x[1:] # [2,3,4,5] 右边默认为元素个数
print x[0:4:2] # [1,3] 下标递增2
x = numpy.array([[1,2],[3,4],[5,6]])
print x[:2] # [[1 2],[3 4]]
print x[:2,:1] # [[1],[3]]
x[:2,:1] = 0 # 用标量赋值
print x # [[0,2],[0,4],[5,6]]
x[:2,:1] = [[8],[6]] # 用数组赋值
print x # [[8,2],[6,4],[5,6]]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
六、ndarray数组的布尔索引和花式索引
布尔索引:使用布尔数组作为索引。arr[condition],condition为一个条件/多个条件组成的布尔数组。
布尔型索引代码示例:
print ‘ndarray的布尔型索引‘
x = numpy.array([3,2,3,1,3,0])
# 布尔型数组的长度必须跟被索引的轴长度一致
y = numpy.array([True,False,True,False,True,False])
print x[y] # [3,3,3]
print x[y==False] # [2,1,0]
print x>=3 # [ True False True False True False]
print x[~(x>=3)] # [2,1,0]
print (x==2)|(x==1) # [False True False True False False]
print x[(x==2)|(x==1)] # [2 1]
x[(x==2)|(x==1)] = 0
print x # [3 0 3 0 3 0]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
花式索引:使用整型数组作为索引。
花式索引代码示例:
print ‘ndarray的花式索引:使用整型数组作为索引‘
x = numpy.array([1,2,3,4,5,6])
print x[[0,1,2]] # [1 2 3]
print x[[-1,-2,-3]] # [6,5,4]
x = numpy.array([[1,2],[3,4],[5,6]])
print x[[0,1]] # [[1,2],[3,4]]
print x[[0,1],[0,1]] # [1,4] 打印x[0][0]和x[1][1]
print x[[0,1]][:,[0,1]] # 打印01行的01列 [[1,2],[3,4]]
# 使用numpy.ix_()函数增强可读性
print x[numpy.ix_([0,1],[0,1])] #同上 打印01行的01列 [[1,2],[3,4]]
x[[0,1],[0,1]] = [0,0]
print x # [[0,2],[3,0],[5,6]]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
七、ndarray数组的转置和轴对换
数组的转置/轴对换只会返回源数据的一个视图,不会对源数据进行修改。
代码示例:
print ‘ndarray数组的转置和轴对换‘
k = numpy.arange(9) #[0,1,....8]
m = k.reshape((3,3)) # 改变数组的shape复制生成2维的,每个维度长度为3的数组
print k # [0 1 2 3 4 5 6 7 8]
print m # [[0 1 2] [3 4 5] [6 7 8]]
# 转置(矩阵)数组:T属性 : mT[x][y] = m[y][x]
print m.T # [[0 3 6] [1 4 7] [2 5 8]]
# 计算矩阵的内积 xTx
print numpy.dot(m,m.T) # numpy.dot点乘
# 高维数组的轴对象
k = numpy.arange(8).reshape(2,2,2)
print k # [[[0 1],[2 3]],[[4 5],[6 7]]]
print k[1][0][0]
# 轴变换 transpose 参数:由轴编号组成的元组
m = k.transpose((1,0,2)) # m[y][x][z] = k[x][y][z]
print m # [[[0 1],[4 5]],[[2 3],[6 7]]]
print m[0][1][0]
# 轴交换 swapaxes (axes:轴),参数:一对轴编号
m = k.swapaxes(0,1) # 将第一个轴和第二个轴交换 m[y][x][z] = k[x][y][z]
print m # [[[0 1],[4 5]],[[2 3],[6 7]]]
print m[0][1][0]
# 使用轴交换进行数组矩阵转置
m = numpy.arange(9).reshape((3,3))
print m # [[0 1 2] [3 4 5] [6 7 8]]
print m.swapaxes(1,0) # [[0 3 6] [1 4 7] [2 5 8]]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
八、ndarray通用函数
通用函数(ufunc)是一种对ndarray中的数据执行元素级运算的函数。
一元ufunc:
一元ufunc代码示例:
print ‘一元ufunc示例‘
x = numpy.arange(6)
print x # [0 1 2 3 4 5]
print numpy.square(x) # [ 0 1 4 9 16 25]
x = numpy.array([1.5,1.6,1.7,1.8])
y,z = numpy.modf(x)
print y # [ 0.5 0.6 0.7 0.8]
print z # [ 1. 1. 1. 1.]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
二元ufunc:
二元ufunc代码示例:
print ‘二元ufunc示例‘
x = numpy.array([[1,4],[6,7]])
y = numpy.array([[2,3],[5,8]])
print numpy.maximum(x,y) # [[2,4],[6,8]]
print numpy.minimum(x,y) # [[1,3],[5,7]]
- 1
- 2
- 3
- 4
- 5
- 6
九、NumPy的where函数使用
np.where(condition, x, y),第一个参数为一个布尔数组,第二个参数和第三个参数可以是标量也可以是数组。
代码示例:
print ‘where函数的使用‘
cond = numpy.array([True,False,True,False])
x = numpy.where(cond,-2,2)
print x # [-2 2 -2 2]
cond = numpy.array([1,2,3,4])
x = numpy.where(cond>2,-2,2)
print x # [ 2 2 -2 -2]
y1 = numpy.array([-1,-2,-3,-4])
y2 = numpy.array([1,2,3,4])
x = numpy.where(cond>2,y1,y2) # 长度须匹配
print x # [1,2,-3,-4]
print ‘where函数的嵌套使用‘
y1 = numpy.array([-1,-2,-3,-4,-5,-6])
y2 = numpy.array([1,2,3,4,5,6])
y3 = numpy.zeros(6)
cond = numpy.array([1,2,3,4,5,6])
x = numpy.where(cond>5,y3,numpy.where(cond>2,y1,y2))
print x # [ 1. 2. -3. -4. -5. 0.]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
十、ndarray常用的统计方法
可以通过这些基本统计方法对整个数组/某个轴的数据进行统计计算。
代码示例:
print ‘numpy的基本统计方法‘
x = numpy.array([[1,2],[3,3],[1,2]]) #同一维度上的数组长度须一致
print x.mean() # 2
print x.mean(axis=1) # 对每一行的元素求平均
print x.mean(axis=0) # 对每一列的元素求平均
print x.sum() #同理 12
print x.sum(axis=1) # [3 6 3]
print x.max() # 3
print x.max(axis=1) # [2 3 2]
print x.cumsum() # [ 1 3 6 9 10 12]
print x.cumprod() # [ 1 2 6 18 18 36]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
用于布尔数组的统计方法:
- sum : 统计数组/数组某一维度中的True的个数
- any: 统计数组/数组某一维度中是否存在一个/多个True
- all:统计数组/数组某一维度中是否都是True
代码示例:
print ‘用于布尔数组的统计方法‘
x = numpy.array([[True,False],[True,False]])
print x.sum() # 2
print x.sum(axis=1) # [1,1]
print x.any(axis=0) # [True,False]
print x.all(axis=1) # [False,False]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
使用sort对数组/数组某一维度进行就地排序(会修改数组本身)。
代码示例:
print ‘.sort的就地排序‘
x = numpy.array([[1,6,2],[6,1,3],[1,5,2]])
x.sort(axis=1)
print x # [[1 2 6] [1 3 6] [1 2 5]]
#非就地排序:numpy.sort()可产生数组的副本
- 1
- 2
- 3
- 4
- 5
- 6
十一、ndarray数组的去重以及集合运算
代码示例:(方法返回类型为一维数组(1d))
print ‘ndarray的唯一化和集合运算‘
x = numpy.array([[1,6,2],[6,1,3],[1,5,2]])
print numpy.unique(x) # [1,2,3,5,6]
y = numpy.array([1,6,5])
print numpy.in1d(x,y) # [ True True False True True False True True False]
print numpy.setdiff1d(x,y) # [2 3]
print numpy.intersect1d(x,y) # [1 5 6]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
十二、numpy中的线性代数
import numpy.linalg 模块。线性代数(linear algebra)
常用的numpy.linalg模块函数:
代码示例:
print ‘线性代数‘
import numpy.linalg as nla
print ‘矩阵点乘‘
x = numpy.array([[1,2],[3,4]])
y = numpy.array([[1,3],[2,4]])
print x.dot(y) # [[ 5 11][11 25]]
print numpy.dot(x,y) # # [[ 5 11][11 25]]
print ‘矩阵求逆‘
x = numpy.array([[1,1],[1,2]])
y = nla.inv(x) # 矩阵求逆(若矩阵的逆存在)
print x.dot(y) # 单位矩阵 [[ 1. 0.][ 0. 1.]]
print nla.det(x) # 求行列式
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
十三、numpy中的随机数生成
import numpy.random模块。
常用的numpy.random模块函数:
代码示例:
print ‘numpy.random随机数生成‘
import numpy.random as npr
x = npr.randint(0,2,size=100000) #抛硬币
print (x>0).sum() # 正面的结果
print npr.normal(size=(2,2)) #正态分布随机数数组 shape = (2,2)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
十四、ndarray数组重塑
代码示例:
print ‘ndarray数组重塑‘
x = numpy.arange(0,6) #[0 1 2 3 4]
print x #[0 1 2 3 4]
print x.reshape((2,3)) # [[0 1 2][3 4 5]]
print x #[0 1 2 3 4]
print x.reshape((2,3)).reshape((3,2)) # [[0 1][2 3][4 5]]
y = numpy.array([[1,1,1],[1,1,1]])
x = x.reshape(y.shape)
print x # [[0 1 2][3 4 5]]
print x.flatten() # [0 1 2 3 4 5]
x.flatten()[0] = -1 # flatten返回的是拷贝
print x # [[0 1 2][3 4 5]]
print x.ravel() # [0 1 2 3 4 5]
x.ravel()[0] = -1 # ravel返回的是视图(引用)
print x # [[-1 1 2][3 4 5]]
print "维度大小自动推导"
arr = numpy.arange(15)
print arr.reshape((5, -1)) # 15 / 5 = 3
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
十五、ndarray数组的拆分与合并
代码示例:
print ‘数组的合并与拆分‘
x = numpy.array([[1, 2, 3], [4, 5, 6]])
y = numpy.array([[7, 8, 9], [10, 11, 12]])
print numpy.concatenate([x, y], axis = 0)
# 竖直组合 [[ 1 2 3][ 4 5 6][ 7 8 9][10 11 12]]
print numpy.concatenate([x, y], axis = 1)
# 水平组合 [[ 1 2 3 7 8 9][ 4 5 6 10 11 12]]
print ‘垂直stack与水平stack‘
print numpy.vstack((x, y)) # 垂直堆叠:相对于垂直组合
print numpy.hstack((x, y)) # 水平堆叠:相对于水平组合
# dstack:按深度堆叠
print numpy.split(x,2,axis=0)
# 按行分割 [array([[1, 2, 3]]), array([[4, 5, 6]])]
print numpy.split(x,3,axis=1)
# 按列分割 [array([[1],[4]]), array([[2],[5]]), array([[3],[6]])]
# 堆叠辅助类
import numpy as np
arr = np.arange(6)
arr1 = arr.reshape((3, 2))
arr2 = np.random.randn(3, 2)
print ‘r_用于按行堆叠‘
print np.r_[arr1, arr2]
‘‘‘
[[ 0. 1. ]
[ 2. 3. ]
[ 4. 5. ]
[ 0.22621904 0.39719794]
[-1.2201912 -0.23623549]
[-0.83229114 -0.72678578]]
‘‘‘
print ‘c_用于按列堆叠‘
print np.c_[np.r_[arr1, arr2], arr]
‘‘‘
[[ 0. 1. 0. ]
[ 2. 3. 1. ]
[ 4. 5. 2. ]
[ 0.22621904 0.39719794 3. ]
[-1.2201912 -0.23623549 4. ]
[-0.83229114 -0.72678578 5. ]]
‘‘‘
print ‘切片直接转为数组‘
print np.c_[1:6, -10:-5]
‘‘‘
[[ 1 -10]
[ 2 -9]
[ 3 -8]
[ 4 -7]
[ 5 -6]]
‘‘‘
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
十六、数组的元素重复操作
代码示例:
print ‘数组的元素重复操作‘
x = numpy.array([[1,2],[3,4]])
print x.repeat(2) # 按元素重复 [1 1 2 2 3 3 4 4]
print x.repeat(2,axis=0) # 按行重复 [[1 2][1 2][3 4][3 4]]
print x.repeat(2,axis=1) # 按列重复 [[1 1 2 2][3 3 4 4]]
x = numpy.array([1,2])
print numpy.tile(x,2) # tile瓦片:[1 2 1 2]
print numpy.tile(x, (2, 2)) # 指定从低维到高维依次复制的次数。
# [[1 2 1 2][1 2 1 2]]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
全部代码:Github
以上是关于什么是数组的维度,python 的ndim的使用的主要内容,如果未能解决你的问题,请参考以下文章