slam怎么生成新的landmark
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了slam怎么生成新的landmark相关的知识,希望对你有一定的参考价值。
参考技术A slam怎么生成新的landmark。提出了一种基于学习的相机定位算法,其无需存储图像特征和场景三维点云,降低了存储限制,通过识别场景中稀疏但显著有代表性的landmark来找到2D-3D对应关系进行后续的鲁棒姿态估计,通过训练检测landmark的场景特定的CNN来实现所提出的想法,即回归输入图像中对应landmark的2D坐标。
来源:公众号计算机视觉工坊
作者:一杯红茶
点击进入—>粉丝交流群
创新点与Contributions:
1)与大多数landmark通常可见的人体姿态估计不同,由于相机视野有限并且无法同时观察场景的不同部分,相机姿态估计任务中大多数场景landmark不会同时可见,文章通过提出一种新的神经方位估计器(Neural Bearing Estimator,NBE)来解决这一问题,该估计器可以直接回归相机坐标系中场景landmark的3D方位向量,NBE学习全局场景表示的同时学习预测场景landmark的方向向量,即使它们不可见。
2)提出了一个新的室内定位数据集,INDOOR-6,相对于传统的7-Scenes室内数据集,包含更多变化的场景、昼夜图像和强烈的照明变化
3)与现有的无存储定位方法相比,具有低存储的优点且性能较好
文章提出了两种预测图像中场景landmark的方法,在第一种方法中训练了一个模型来识别图像中的2D场景地标,称之为场景地标检测器(SLD),由于假设已知的相机内参,这些2D检测可以转换为3D方位矢量或射线。在第二种方法中训练了一个不同的模型直接预测相机坐标系中landmark的3D方位向量,称之为神经方位估计器(NBE)。注:使用SLD,只能检测到相机视场(FoV)中可见的landmark,而NBE预测所有landmark的方位,包括相机视场外不可见的landmark。
首先会有一个SFM构建的点云模型,会在这些点云中挑选出有代表性的点云子集,用这些子集以及建图时SFM算法生成的数据库图像的伪真值来训练两个提出的网络模型。
SLD:
SLD被设计为将RGB图像I作为输入并输出一组像素似然图(热图)表示每个可见地标的位置,其模型架构如下:
由四个主要组件组成:使用ResNet-18为backbone,删除最后三个最大池化层以保留高分辨率特征图(输出分辨率为输入图像分辨率的四分之一),其次在ResNet-18之后使用扩张卷积块,扩张率设置为
一文详解bundle adjustment
作者:李城
点击上方“3D视觉工坊”,选择“星标”
干货第一时间送达
?
bundle adjustment 的历史发展
bundle adjustment,中文名称是光束法平差,经典的BA目的是优化相机的pose和landmark,其在SfM和SLAM 领域中扮演者重要角色.目前大多数书籍或者参老文献将其翻译成"捆绑调整"是不太严谨的做法.bundle adjustment 最早是19世纪由搞大地测量学(测绘学科)的人提出来的,19世纪中期的时候,geodetics的学者就开始研究large scale triangulations(大型三角剖分)。20世纪中期,随着camera和computer的出现,photogrammetry(摄影测量学)也开始研究adjustment computation,所以他们给起了个名字叫bundle adjustment(隶属摄影测量学科前辈的功劳)。21世纪前后,robotics领域开始兴起SLAM,最早用的recursive bayesian filter(递归贝叶斯滤波),后来把问题搞成个graph然后用least squares方法求解,bundle adjusment历史发展图如下:
bundle adjustment 其本质还是离不开最小二乘原理(Gauss功劳)(几乎所有优化问题其本质都是最小二乘),目前bundle adjustment 优化框架最为代表的是ceres solver和g2o(这里主要介绍ceres solver).据说ceres的命名是天文学家Piazzi闲暇无事的时候观测一颗没有观测到的星星,最后用least squares算出了这个小行星的轨道,故将这个小行星命名为ceres.
Bundle adjustment 的算法理论
观测值:像点坐标 优化量(平差量):pose 和landmark 因为一旦涉及平差,就必定有如下公式:观测值+观测值改正数=近似值+近似值改正数,那么bundle adjustment 的公式还是从共线条件方程出发:
四种Bundle adjustment 算法代码
这里代码主要从四个方面来介绍:
- 优化相机内参及畸变系数,相机的pose(6dof)和landmark 代价函数写法如下:
template <typename CameraModel>
class BundleAdjustmentCostFunction {
public:
explicit BundleAdjustmentCostFunction(const Eigen::Vector2d& point2D)
: observed_x_(point2D(0)), observed_y_(point2D(1)) {}
//构造函数传入的是观测值
static ceres::CostFunction* Create(const Eigen::Vector2d& point2D) {
return (new ceres::AutoDiffCostFunction<
BundleAdjustmentCostFunction<CameraModel>, 2, 4, 3, 3,
CameraModel::kNumParams>(
new BundleAdjustmentCostFunction(point2D)));
}
//优化量:2代表误差方程个数;4代表pose中的姿态信息,用四元数表示;3代表pose中的位置信息;3代表landmark
自由度;CameraModel::kNumParams是相机内参和畸变系数,其取决于相机模型是what
// opertator 重载函数的参数即是待优化的量
template <typename T>
bool operator()(const T* const qvec, const T* const tvec,
const T* const point3D, const T* const camera_params,
T* residuals) const {
// Rotate and translate.
T projection[3];
ceres::UnitQuaternionRotatePoint(qvec, point3D, projection);
projection[0] += tvec[0];
projection[1] += tvec[1];
projection[2] += tvec[2];
// Project to image plane.
projection[0] /= projection[2];
projection[1] /= projection[2];
// Distort and transform to pixel space.
CameraModel::WorldToImage(camera_params, projection[0], projection[1],
&residuals[0], &residuals[1]);
// Re-projection error.
residuals[0] -= T(observed_x_);
residuals[1] -= T(observed_y_);
return true;
}
private:
const double observed_x_;
const double observed_y_;
};
写好了代价函数,下面就是需要把参数都加入残差块,让ceres自动求导,代码如下:
ceres::Problem problem;
ceres::CostFunction* cost_function = nullptr;
ceres::LossFunction * p_LossFunction =
ceres_options_.bUse_loss_function_ ?
new ceres::HuberLoss(Square(4.0))
: nullptr; // 关于为何使用损失函数,因为现实中并不是所有观测过程中的噪声都服从
//gaussian noise的(或者可以说几乎没有),
//遇到有outlier的情况,这些方法非常容易挂掉,
//这时候就得用到robust statistics里面的
//robust cost(*cost也可以叫做loss, 统计学那边喜欢叫risk) function了,
//比较常用的有huber, cauchy等等。
cost_function = BundleAdjustmentCostFunction<CameraModel>::Create(point2D.XY());
//将优化量加入残差块
problem_->AddResidualBlock(cost_function, p_LossFunction, qvec_data,
tvec_data, point3D.XYZ().data(),
camera_params_data);
如上,case1 的bundle adjustment 就搭建完成!
- 优化相机内参及畸变系数,pose subset parameterization(pose 信息部分参数优化)和3D landmark,当 只优化姿态信息时候,problem需要添加的代码如下:
//这里姿态又用欧拉角表示
map_poses[indexPose] = {angleAxis[0], angleAxis[1], angleAxis[2], t(0), t(1), t(2)};
double * parameter_block = &map_poses.at(indexPose)[0];
problem.AddParameterBlock(parameter_block, 6);
std::vector<int> vec_constant_extrinsic;
vec_constant_extrinsic.insert(vec_constant_extrinsic.end(), {3,4,5});
if (!vec_constant_extrinsic.empty())
{
// 主要用到ceres的SubsetParameterization函数
ceres::SubsetParameterization *subset_parameterization =
new ceres::SubsetParameterization(6, vec_constant_extrinsic);
problem.SetParameterization(parameter_block, subset_parameterization);
}
- 优化相机内参及畸变系数,pose subset parameterization(pose 信息部分参数优化)和3D landmark,当 只优化位置信息时候,problem需要添加的代码如下(同上面代码,只需修改一行):
//这里姿态又用欧拉角表示
map_poses[indexPose] = {angleAxis[0], angleAxis[1], angleAxis[2], t(0), t(1), t(2)};
double * parameter_block = &map_poses.at(indexPose)[0];
problem.AddParameterBlock(parameter_block, 6);
std::vector<int> vec_constant_extrinsic;
vec_constant_extrinsic.insert(vec_constant_extrinsic.end(), {1,2,3});
if (!vec_constant_extrinsic.empty())
{
ceres::SubsetParameterization *subset_parameterization =
new ceres::SubsetParameterization(6, vec_constant_extrinsic);
problem.SetParameterization(parameter_block, subset_parameterization);
}
- 优化相机内参及畸变系数,pose 是常量不优化 和3D landmark. 代价函数写法如下:
//相机模型
template <typename CameraModel>
class BundleAdjustmentConstantPoseCostFunction {
public:
BundleAdjustmentConstantPoseCostFunction(const Eigen::Vector4d& qvec,
const Eigen::Vector3d& tvec,
const Eigen::Vector2d& point2D)
: qw_(qvec(0)),
qx_(qvec(1)),
qy_(qvec(2)),
qz_(qvec(3)),
tx_(tvec(0)),
ty_(tvec(1)),
tz_(tvec(2)),
observed_x_(point2D(0)),
observed_y_(point2D(1)) {}
static ceres::CostFunction* Create(const Eigen::Vector4d& qvec,
const Eigen::Vector3d& tvec,
const Eigen::Vector2d& point2D) {
return (new ceres::AutoDiffCostFunction<
BundleAdjustmentConstantPoseCostFunction<CameraModel>, 2, 3,
CameraModel::kNumParams>(
new BundleAdjustmentConstantPoseCostFunction(qvec, tvec, point2D)));
}
template <typename T>
bool operator()(const T* const point3D, const T* const camera_params,
T* residuals) const {
const T qvec[4] = {T(qw_), T(qx_), T(qy_), T(qz_)};
// Rotate and translate.
T projection[3];
ceres::UnitQuaternionRotatePoint(qvec, point3D, projection);
projection[0] += T(tx_);
projection[1] += T(ty_);
projection[2] += T(tz_);
// Project to image plane.
projection[0] /= projection[2];
projection[1] /= projection[2];
// Distort and transform to pixel space.
CameraModel::WorldToImage(camera_params, projection[0], projection[1],
&residuals[0], &residuals[1]);
// Re-projection error.
residuals[0] -= T(observed_x_);
residuals[1] -= T(observed_y_);
return true;
}
private:
const double qw_;
const double qx_;
const double qy_;
const double qz_;
const double tx_;
const double ty_;
const double tz_;
const double observed_x_;
const double observed_y_;
};
接下来problem 加入残差块代码如下:
ceres::Problem problem;
ceres::CostFunction* cost_function = nullptr;
ceres::LossFunction * p_LossFunction =
ceres_options_.bUse_loss_function_ ?
new ceres::HuberLoss(Square(4.0))
: nullptr; // 关于为何使用损失函数,因为现实中并不是所有观测过程中的噪声都服从
//gaussian noise的(或者可以说几乎没有),
//遇到有outlier的情况,这些方法非常容易挂掉,
//这时候就得用到robust statistics里面的
//robust cost(*cost也可以叫做loss, 统计学那边喜欢叫risk) function了,
//比较常用的有huber, cauchy等等。
cost_function = BundleAdjustmentConstantPoseCostFunction<CameraModel>::Create(
image.Qvec(), image.Tvec(), point2D.XY());//观测值输入
//将优化量加入残差块
problem_->AddResidualBlock(cost_function, loss_function,
point3D.XYZ().data(), camera_params_data);//被优化量加入残差-3D点和相机内参
以上就是四种BA 的case 当然还可以有很多变种,比如gps约束的BA(即是附有限制条件的间接平差),比如 固定3D landmark,优化pose和相机参数和畸变系数
参考资料
- colmap openmvg 源代码,github 地址:https://github.com/openMVG/openMVGhttps://github.com/colmap/colmap
- 单杰. 光束法平差简史与概要. 武汉大学学报·信息科学版, 2018, 43(12): 1797-1810.
备注:作者也是我们「3D视觉从入门到精通」特邀嘉宾:一个超干货的3D视觉学习社区本文仅做学术分享,如有侵权,请联系删文。下载1在「3D视觉工坊」公众号后台回复:3D视觉,即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。
下载2在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总,即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。
下载3在「3D视觉工坊」公众号后台回复:相机标定,即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配,即可下载独家立体匹配学习课件与视频网址。
重磅!3DCVer-学术论文写作投稿 交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。
一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。
▲长按加微信群或投稿
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、可答疑解惑、助你高效解决问题觉得有用,麻烦给个赞和在看~
以上是关于slam怎么生成新的landmark的主要内容,如果未能解决你的问题,请参考以下文章