xgboost参数调优
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了xgboost参数调优相关的知识,希望对你有一定的参考价值。
参考技术A 一. 确定最佳决策树数量选择较高的学习速率(learning rate)。一般情况下,学习速率的值为0.1。但是,对于不同的问题,理想的学习速率有时候会在0.05到0.3之间波动。选择对应于此学习速率的理想决策树数量。XGBoost有一个很有用的函数“cv”,这个函数可以在每一次迭代中使用交叉验证,并返回理想的决策树数量。
先给定boosting主要参数一个初始值,后续再进行调优。
1、max_depth = 5 :这个参数的取值最好在3-10之间。我选的起始值为5,但是你也可以选择其它的值。起始值在4-6之间都是不错的选择。
2、min_child_weight = 1:在这里选了一个比较小的值,因为这是一个极不平衡的分类问题。因此,某些叶子节点下的值会比较小。
3、gamma = 0: 起始值也可以选其它比较小的值,在0.1到0.2之间就可以。这个参数后继也是要调整的。
4、subsample,colsample_bytree = 0.8: 这个是最常见的初始值了。典型值的范围在0.5-0.9之间。
5、scale_pos_weight = 1: 这个值是因为类别十分不平衡。
二. 主要参数调优
对于给定的学习速率和决策树数量,进行决策树特定参数调优(max_depth, min_child_weight, gamma, subsample, colsample_bytree)。
这里通常使用GridSearch。可先寻找max_depth、min_child_weight,确定后,再对gamma、subsample等调优。
三. xgboost的正则化参数的调优。(lambda, alpha)。这些参数可以降低模型的复杂度,从而提高模型的表现。
四. 降低学习速率,确定理想参数。
xgboost 中,objective 是模型学习任务参数(learning task parameters)中的目标参数,它指定训练任务的目标。
objective 参数默认值为 reg:squarederror 。
https://zhuanlan.zhihu.com/p/29649128
xgboost 参数调优指南
一、XGBoost的优势
XGBoost算法可以给预测模型带来能力的提升。当我对它的表现有更多了解的时候,当我对它的高准确率背后的原理有更多了解的时候,我发现它具有很多优势:
1 正则化
- 标准GBDT 的实现没有像XGBoost这样的正则化步骤。正则化对减少过拟合也是有帮助的。
- 实际上,XGBoost以“正则化提升(regularized boosting)”技术而闻名。
2 并行处理
- XGBoost可以实现并行处理,相比GBDT有了速度的飞跃。
- 不过,众所周知,Boosting算法是顺序处理的,它怎么可能并行呢?每一课树的构造都依赖于前一棵树,那具体是什么让我们能用多核处理器去构造一个树呢?其实 XGBoost并行指代的是更低粒度的并行,是在特征层面的并行。
- XGBoost 也支持Hadoop实现。
3 高度的灵活性
- XGBoost 允许用户定义自定义优化目标和评价标准
- 它对模型增加了一个全新的维度,所以我们的处理不会受到任何限制。
4 缺失值处理
- XGBoost内置处理缺失值的规则。
- 用户需要提供一个和其它样本不同的值,然后把它作为一个参数传进去,以此来作为缺失值的取值。XGBoost在不同节点遇到缺失值时采用不同的处理方法,并且会学习未来遇到缺失值时的处理方法。
5 剪枝
- 当分裂时遇到一个负损失时,GBM会停止分裂。因此GBM实际上是一个贪心算法。
- XGBoost会一直分裂到指定的最大深度(max_depth),然后回过头来剪枝。如果某个节点之后不再有正值,它会去除这个分裂。
- 这种做法的优点,当一个负损失(如-2)后面有个正损失(如+10)的时候,就显现出来了。GBM会在-2处停下来,因为它遇到了一个负值。但是XGBoost会继续分裂,然后发现这两个分裂综合起来会得到+8,因此会保留这两个分裂。
6 内置交叉验证
- XGBoost允许在每一轮boosting迭代中使用交叉验证。因此,可以方便地获得最优boosting迭代次数。
- 而GBM使用网格搜索,只能检测有限个值。
7 在已有的模型基础上继续
- XGBoost可以在上一轮的结果上继续训练。这个特性在某些特定的应用上是一个巨大的优势。
- sklearn中的GBM的实现也有这个功能,两种算法在这一点上是一致的。
二、XGBoost的参数
XGBoost的作者把所有的参数分成了三类:
- 通用参数:宏观函数控制。
- Booster参数:控制每一步的booster(tree/regression)。
- 学习目标参数:控制训练目标的表现。
- 除了以上参数还可能有其它参数,在命令行中使用
1 通用参数
1)booster[默认gbtree]
- 选择每次迭代的模型,有两种选择:
gbtree:基于树的模型
gbliner:线性模型
2)silent[默认0]
- 当这个参数值为1时,静默模式开启,不会输出任何信息。
- 一般这个参数就保持默认的0,因为这样能帮我们更好地理解模型。
3)nthread[默认值为最大可能的线程数]
- 这个参数用来进行多线程控制,应当输入系统的核数。
- 如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。
还有两个参数,XGBoost会自动设置,目前你不用管它。
4)num_feature [set automatically by xgboost, no need to be set by user]
boosting过程中用到的特征维数,设置为特征个数。XGBoost会自动设置,不需要手工设置。
2 booster参数
尽管有两种booster可供选择,我这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到。
1)eta[默认0.3]
- 和GBM中的 learning rate 参数类似。
- 通过减少每一步的权重,可以提高模型的鲁棒性。
- 典型值为0.01-0.2。
2)min_child_weight[默认1]
- 决定最小叶子节点样本权重和。
- 和GBM的 min_child_leaf 参数类似,但不完全一样。XGBoost的这个参数是最小样本权重的和,而GBM参数是最小样本总数。
- 这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。
- 但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。
3)max_depth[默认6]
- 和GBM中的参数相同,这个值为树的最大深度。
- 这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。
- 需要使用CV函数来进行调优。
- 典型值:3-10
4)max_leaf_nodes
- 树上最大的节点或叶子的数量。
- 可以替代max_depth的作用。因为如果生成的是二叉树,一个深度为n的树最多生成n2n2个叶子。
- 如果定义了这个参数,GBM会忽略max_depth参数。
5)gamma[默认0]
- 在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。
- 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。
- 模型在默认情况下,对于一个节点的划分只有在其loss function 得到结果大于0的情况下才进行,而gamma 给定了所需的最低loss function的值
- gamma值使得算法更conservation,且其值依赖于loss function ,在模型中应该进行调参
6)max_delta_step[默认0]
- 这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。
- 通常,这个参数不需要设置。但是当各类别的样本十分不平衡时,它对逻辑回归是很有帮助的。
- 这个参数一般用不到,但是你可以挖掘出来它更多的用处。
7)subsample[默认1]
- 和GBM中的subsample参数一模一样。这个参数控制对于每棵树,随机采样的比例。
- 减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。
- 典型值:0.5-1
8)colsample_bytree[默认1]
- 和GBM里面的max_features参数类似。用来控制每棵随机采样的列数的占比(每一列是一个特征)。
- 典型值:0.5-1
9)colsample_bylevel[默认1]
- 用来控制树的每一级的每一次分裂,对列数的采样的占比。
- 我个人一般不太用这个参数,因为subsample参数和colsample_bytree参数可以起到相同的作用。但是如果感兴趣,可以挖掘这个参数更多的用处。
10)lambda[默认1]
- 权重的L2正则化项。(和Ridge regression类似)。
- 这个参数是用来控制XGBoost的正则化部分的。
11)alpha[默认1]
- 权重的L1正则化项。(和Lasso regression类似)。
- 可以应用在很高维度的情况下,使得算法的速度更快。
12)scale_pos_weight[默认1]
- 在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。
- 大于0的取值可以处理类别不平衡的情况。帮助模型更快收敛。
另外:Parameter for Linear Booster
- lambda [default=0]
- L2 正则的惩罚系数
- 用于处理XGBoost的正则化部分。通常不使用,但可以用来降低过拟合
- alpha [default=0]
- L1 正则的惩罚系数
- 当数据维度极高时可以使用,使得算法运行更快。
- lambda_bias
- 在偏置上的L2正则。
缺省值为0
(在L1上没有偏置项的正则,因为L1时偏置不重要)
- 在偏置上的L2正则。
3 学习目标参数
这个参数用来控制理想的优化目标和每一步结果的度量方法。
1)objective[默认reg:linear]
- 这个参数定义需要被最小化的损失函数。最常用的值有: 定义学习任务及相应的学习目标,可选的目标函数如下:
- “reg:linear” –线性回归。
- “reg:logistic” –逻辑回归。
- “binary:logistic” –二分类的逻辑回归问题,输出为概率。
- “binary:logitraw” –二分类的逻辑回归问题,输出的结果为wTx。
- “count:poisson” –计数问题的poisson回归,输出结果为poisson分布。
- 在poisson回归中,max_delta_step的缺省值为0.7。(used to safeguard optimization)
- “multi:softmax” –让XGBoost采用softmax目标函数处理多分类问题,同时需要设置参数num_class(类别个数)
- “multi:softprob” –和softmax一样,但是输出的是ndata * nclass的向量,可以将该向量reshape成ndata行nclass列的矩阵。每行数据表示样本所属于每个类别的概率。
- “rank:pairwise” –set XGBoost to do ranking task by minimizing the pairwise loss
2)eval_metric[默认值取决于objective参数的取值]
- 对于有效数据的度量方法。
- 对于回归问题,默认值是rmse,对于分类问题,默认值是error。
- 典型值有:
- rmse 均方根误差
- mae 平均绝对误差
- logloss 负对数似然函数值
- error 二分类错误率(阈值为0.5)
- merror 多分类错误率
- mlogloss 多分类logloss损失函数
- auc 曲线下面积
3)seed(默认0)
- 随机数的种子
- 设置它可以复现随机数据的结果,也可以用于调整参数
如果你比较习惯scikit-learn的参数形式,那么XGBoost的Python 版本也提供了sklearn形式的接口 XGBClassifier。
它使用sklearn形式的参数命名方式,对应关系如下:
1、eta -> learning_rate
2、lambda -> reg_lambda
3、alpha -> reg_alpha
另外:Console Parameters
The following parameters are only used in the console version of xgboost
* use_buffer [ default=1 ]
- 是否为输入创建二进制的缓存文件,缓存文件可以加速计算。缺省值为1
* num_round
- boosting迭代计算次数。
* data
- 输入数据的路径
* test:data
- 测试数据的路径
* save_period [default=0]
- 表示保存第i*save_period次迭代的模型。例如save_period=10表示每隔10迭代计算XGBoost将会保存中间结果,设置为0表示每次计算的模型都要保持。
* task [default=train] options: train, pred, eval, dump
- train:训练模型
- pred:对测试数据进行预测
- eval:通过eval[name]=filenam定义评价指标
- dump:将学习模型保存成文本格式
* model_in [default=NULL]
- 指向模型的路径在test, eval, dump都会用到,如果在training中定义XGBoost将会接着输入模型继续训练
* model_out [default=NULL]
- 训练完成后模型的保存路径,如果没有定义则会输出类似0003.model这样的结果,0003是第三次训练的模型结果。
* model_dir [default=models]
- 输出模型所保存的路径。
* fmap
- feature map, used for dump model
* name_dump [default=dump.txt]
- name of model dump file
* name_pred [default=pred.txt]
- 预测结果文件
* pred_margin [default=0]
- 输出预测的边界,而不是转换后的概率
你肯定在疑惑为啥咱们没有介绍和GBM中的n_estimators
类似的参数。XGBClassifier中确实有一个类似的参数,但是,是在标准XGBoost实现中调用拟合函数时,把它作为num_boosting_rounds
参数传入。
XGBoost Guide 的一些部分是我强烈推荐大家阅读的,通过它可以对代码和参数有一个更好的了解:
XGBoost Parameters (official guide)
XGBoost Demo Codes (xgboost GitHub repository)
Python API Reference (official guide)
三、调参示例
我们从Data Hackathon 3.x AV版的hackathon中获得数据集,和GBM 介绍文章中是一样的。更多的细节可以参考competition page
数据集可以从这里下载。我已经对这些数据进行了一些处理:
City
变量,因为类别太多,所以删掉了一些类别。DOB
变量换算成年龄,并删除了一些数据。- 增加了
EMI_Loan_Submitted_Missing
变量。如果EMI_Loan_Submitted
变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的EMI_Loan_Submitted
变量。 EmployerName
变量,因为类别太多,所以删掉了一些类别。- 因为
Existing_EMI
变量只有111个值缺失,所以缺失值补充为中位数0。 - 增加了
Interest_Rate_Missing
变量。如果Interest_Rate
变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的Interest_Rate
变量。 - 删除了
Lead_Creation_Date
,从直觉上这个特征就对最终结果没什么帮助。 Loan_Amount_Applied, Loan_Tenure_Applied
两个变量的缺项用中位数补足。- 增加了
Loan_Amount_Submitted_Missing
变量。如果Loan_Amount_Submitted
变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的Loan_Amount_Submitted
变量。 - 增加了
Loan_Tenure_Submitted_Missing
变量。如果Loan_Tenure_Submitted
变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的Loan_Tenure_Submitted
变量。 - 删除了
LoggedIn
,Salary_Account
两个变量 - 增加了
Processing_Fee_Missing
变量。如果Processing_Fee
变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的Processing_Fee
变量。 Source
前两位不变,其它分成不同的类别。- 进行了离散化和独热编码(一位有效编码)。
如果你有原始数据,可以从资源库里面下载data_preparation
的Ipython notebook
文件,然后自己过一遍这些步骤。
首先,import必要的库,然后加载数据。
注意我import了两种XGBoost:
- xgb - 直接引用xgboost。接下来会用到其中的“cv”函数。
- XGBClassifier - 是xgboost的sklearn包。这个包允许我们像GBM一样使用Grid Search 和并行处理。
在向下进行之前,我们先定义一个函数,它可以帮助我们建立XGBoost models 并进行交叉验证。好消息是你可以直接用下面的函数,以后再自己的models中也可以使用它。
这个函数和GBM中使用的有些许不同。注意xgboost的sklearn包没有“feature_importance”这个量度,但是get_fscore()函数有相同的功能。
四、参数调优的一般方法
我们会使用和GBM中相似的方法。需要进行如下步骤:
-
选择较高的学习速率(learning rate)。一般情况下,学习速率的值为0.1。但是,对于不同的问题,理想的学习速率有时候会在0.05到0.3之间波动。选择对应于此学习速率的理想决策树数量。XGBoost有一个很有用的函数“cv”,这个函数可以在每一次迭代中使用交叉验证,并返回理想的决策树数量。
-
对于给定的学习速率和决策树数量,进行决策树特定参数调优(max_depth, min_child_weight, gamma, subsample, colsample_bytree)。在确定一棵树的过程中,我们可以选择不同的参数,待会儿我会举例说明。
-
xgboost的正则化参数的调优。(lambda, alpha)。这些参数可以降低模型的复杂度,从而提高模型的表现。
-
降低学习速率,确定理想参数。
咱们一起详细地一步步进行这些操作。
第一步:确定学习速率和tree_based 参数调优的估计器数目
为了确定boosting
参数,我们要先给其它参数一个初始值。咱们先按如下方法取值:
1、max_depth
= 5 :这个参数的取值最好在3-10之间。我选的起始值为5,但是你也可以选择其它的值。起始值在4-6之间都是不错的选择。
2、min_child_weight
= 1:在这里选了一个比较小的值,因为这是一个极不平衡的分类问题。因此,某些叶子节点下的值会比较小。
3、gamma
= 0: 起始值也可以选其它比较小的值,在0.1到0.2之间就可以。这个参数后继也是要调整的。
4、subsample, colsample_bytree
= 0.8: 这个是最常见的初始值了。典型值的范围在0.5-0.9之间。
5、scale_pos_weight
= 1: 这个值是因为类别十分不平衡。
注意哦,上面这些参数的值只是一个初始的估计值,后继需要调优。这里把学习速率就设成默认的0.1。然后用xgboost中的cv函数来确定最佳的决策树数量。前文中的函数可以完成这个工作。
简单调参方法: 首先调整max_depth ,通常max_depth 这个参数与其他参数关系不大,初始值设置为10,找到一个最好的误差值,然后就可以调整参数与这个误差值进行对比。比如调整到8,如果此时最好的误差变高了,那么下次就调整到12;如果调整到12,误差值比10 的低,那么下次可以尝试调整到15. 在找到了最优的max_depth之后,可以开始调整subsample,初始值设置为1,然后调整到0.8 如果误差值变高,下次就调整到0.9,如果还是变高,就保持为1.0 接着开始调整min_child_weight , 方法与上面同理 再接着调整colsample_bytree 经过上面的调整,已经得到了一组参数,这时调整eta 到0.05,然后让程序运行来得到一个最佳的num_round,(在 误差值开始上升趋势的时候为最佳 )
参考:https://blog.csdn.net/wzmsltw/article/details/50994481
https://blog.csdn.net/han_xiaoyang/article/details/52665396
以上是关于xgboost参数调优的主要内容,如果未能解决你的问题,请参考以下文章
机器学习系列(12)_XGBoost参数调优完全指南(附Python代码)
AutoML之flaml:基于flaml框架对比lightgbm和xgboost模型进行自动化参数调优实现体内脂肪含量值回归预测案例之详细攻略