LeetCode 1039. Minimum Score Triangulation of Polygon

Posted Dylan_Java_NYC

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LeetCode 1039. Minimum Score Triangulation of Polygon相关的知识,希望对你有一定的参考价值。

原题链接在这里:https://leetcode.com/problems/minimum-score-triangulation-of-polygon/

题目:

Given N, consider a convex N-sided polygon with vertices labelled A[0], A[i], ..., A[N-1] in clockwise order.

Suppose you triangulate the polygon into N-2 triangles.  For each triangle, the value of that triangle is the product of the labels of the vertices, and the total score of the triangulation is the sum of these values over all N-2 triangles in the triangulation.

Return the smallest possible total score that you can achieve with some triangulation of the polygon.

Example 1:

Input: [1,2,3]
Output: 6
Explanation: The polygon is already triangulated, and the score of the only triangle is 6.

Example 2:

技术图片

Input: [3,7,4,5]
Output: 144
Explanation: There are two triangulations, with possible scores: 3*7*5 + 4*5*7 = 245, or 3*4*5 + 3*4*7 = 144.  The minimum score is 144.

Example 3:

Input: [1,3,1,4,1,5]
Output: 13
Explanation: The minimum score triangulation has score 1*1*3 + 1*1*4 + 1*1*5 + 1*1*1 = 13.

Note:

  1. 3 <= A.length <= 50
  2. 1 <= A[i] <= 100

题解:

Edge between A[i] and A[j] would construct only one triangle in polygon. With k between i and j, these 3 nodes construct trangle and the rest i~k, and k~j are polygons. Maintain the minimum.

Let dp[i][j] denotes the minimum score got using nodes from A[i] to A[j].

For all k bigger than i and smaller than j, maintain the mimimum score by min(dp[i][k] + dp[k][j] + A[i]*A[j]*A[k]).

Time Complexity: O(n^3). n = A.length.

Space: O(n^2).

AC Java:

 1 class Solution {
 2     public int minScoreTriangulation(int[] A) {
 3         int n = A.length;
 4         int [][] dp = new int[n][n];
 5         for(int d = 2; d<n; d++){
 6             for(int i = 0; i+d<n; i++){
 7                 int j = i+d;
 8                 dp[i][j] = Integer.MAX_VALUE;
 9                 for(int k = i+1; k<j; k++){
10                     dp[i][j] = Math.min(dp[i][j], dp[i][k]+dp[k][j]+A[i]*A[j]*A[k]);
11                 }
12             }
13         }
14         
15         return dp[0][n-1];
16     }
17 }

Another implementation.

 1 class Solution {
 2     public int minScoreTriangulation(int[] A) {
 3         int n = A.length;
 4         int [][] dp = new int[n][n];
 5         for(int j = 2; j<n; j++){
 6             for(int i = j-2; i>=0; i--){
 7                 dp[i][j] = Integer.MAX_VALUE;
 8                 for(int k = i+1; k<j; k++){
 9                     dp[i][j] = Math.min(dp[i][j], dp[i][k]+dp[k][j]+A[i]*A[j]*A[k]);
10                 }
11             }
12         }
13         
14         return dp[0][n-1];
15     }
16 }

 

以上是关于LeetCode 1039. Minimum Score Triangulation of Polygon的主要内容,如果未能解决你的问题,请参考以下文章

LeetCode.每日一题 1039. 多边形三角剖分的最低得分

LeetCode Minimum Height Trees

leetcode:Minimum Subarray

leetcode@ [310] Minimum Height Trees

LeetCode -- Minimum Path Sum

LeetCode 2187. Minimum Time to Complete Trips