易基因 ChIP-seq技术简介
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了易基因 ChIP-seq技术简介相关的知识,希望对你有一定的参考价值。
参考技术A 染色质免疫沉淀后测序( ChIP seq )是一种针对DNA结合蛋白、组蛋白修饰或核小体的全基因组分析技术。由于二代测序技术的巨大进步,ChIP-seq比其最初版本ChIP-chip具有更高的分辨率、更低的噪声和更大的覆盖范围。随着测序成本的降低,ChIP- seq已成为研究基因调控和表观遗传机制不可或缺的工具。原理:甲醛处理细胞使目标蛋白与DNA交联,通过超声波将交联后的染色质打断成小片段,一般在200-600bp范围内。再利用抗原抗体的特异性识别反应,将与目的蛋白相结合的DNA片段沉淀下来。最后,去交联并对纯化后DNA进行PCR扩增,高通量测序,最后与已有基因组序列进行比对,以确定 DNA与蛋白质结合的序列。
问题分析:
1.甲醛交联对后续结果分析的影响?
自从Orlando V等人首次发明了ChIP技术,十几年后核心步骤仍无大变化。然而,ChIP-seq技术实际存在一定 的缺陷,例如甲醛交联 。甲醛虽然是一种高度渗透的交联剂,但由于其反应活性仅限于胺,因此其交联效率较低;对哺乳动物细胞而言,其最大交联效率仅为1%。因此甲醛交联细胞所需的起始量很大,也因此该技术也很难适用于微量细胞及单细胞样本。牛津大学出版社发表的文章In vivo formaldehyde cross-linking: it is time for black box analysis指出,某些蛋白质如:阻遏蛋白,NF-κB等无法通过甲醛交联到DNA上,研究表明;在DNA上的停留时间短于5秒的蛋白质无法用甲醛交联。其次,甲醛会导致许多其它无关蛋白质交联到DNA上,影响后续分析数据。有报道称,甲醛交联会触发DNA损伤应答机制,从而改变染色体组分,进而使ChIP结果产生偏向性。除此之外,由于交联反应在加热和低PH的情况下会发生逆转,因此DNA蛋与白质的交联复合物的稳定性也是一个值得关注的问题。因此,甲醛究竟在多大程度上能反应细胞内蛋白质的分布仍不能确定。
根据有无甲醛交联步骤可以把CHIP技术划分为两种类型,一类是存在甲醛交联的ChIP,即X-ChIP(cross-linking and mechanical shearing ChIP);另一类是无交联存在的ChIP,即N-ChIP(native-ChIP);相较于X-ChIP,N-ChIP技术有一系列的优点,包括:高分辨率(MNase的使用使得染色体的片段化可以小至核小体)、避免了甲醛交联带来的非特异性蛋白在DNA上的富集、避免了甲醛交联对抗原表位的遮盖、步骤的减少降低了样品的损失等。然而,由于使用了MNase,N-ChIP只适用于研究组蛋白修饰,大部分情况下不能用于转录因子的研究。
2. 超声波打断和酶断裂方法的比较?
酶类: 最常用的酶类如 MNase ,即:微球菌核酸酶,是一种能降解核小体连接区的DNA序列的核酸酶,最初从金黄色葡萄球菌中分离出来。MNase消化染色质可以释放出一个个独立的核小体。
MNase酶解法具有一定的局限性,首先,MNase对于偏向于切割A/T碱基位点,导致核小体在A/T富集区域的表达量低于真实情况;其次,MNase不能在核小体边界精确切割,这导致在确定染色质的开放位置与真实情况存在差异;而且,MNase偏向于消化脆性核小体。在不同物种的实验证据表明,脆性核小体占据了基因启动子和转录终止位点,而脆性核小体只在MNase浓度较低且消化时间较短的情况下才能被检测出来,因此很难将脆弱核小体量化到稳定核小体的相对丰度。
超声打断则不如酶裂解法温和,而且由于打断的不均匀性,导致测序结果背景噪音高,影响后续数据分析。由于文章篇幅限制,在此不多赘述。
那么究竟选择酶解还是超声打断,需要视 情况 而定。可参考以下建议:
如果所研究的蛋白质高丰度表达且与DNA结合紧密如组蛋白,那么样本无需需交联,这时可使用酶解法。
如果所研究的蛋白质表达丰度较低或与DNA结合不紧密如转录因子等,往往需要用交联试剂将样本进行固定,稳定蛋白质和DNA的形态,这时最好选用超声法进行断裂。
拓展:
适用于微量细胞水平的ChIP技术及其原理
1)CUT-Tag技术:
CUT-Tag可同时用于研究转录因子结合位点以及DNA的开放性。可在一天之内完成从细胞到建库完成的所有步骤,且具有高分辨率,低噪音等特点。起始细胞用量可低至50个。[1]
原理:利用抗原抗体特异性反应,加入特异性抗体与染色体上目标蛋白结合,加入二抗与该抗体结合以募集更多的pA-Tn5转座酶复合物至目标蛋白与DNA序列的结合位点上,转座酶复合物切割该染色质开放位点,并在切割后的DNA片段两端加入接头,文库构建完成,可直接进行后续测序,与已有基因组序列比对,即可知道目标蛋白与DNA的结合位点。
2)ChIL-seq:
ChIL(chromatin integration labelling),即染色质集成标签技术,可同时用于研究转录因子结合位点以及DNA的开放性,起始细胞用量为100-1000个细胞。ChIL-seq 避免了传统ChIP-seq技术中由于抗体沉淀所带来的回收率低的缺陷,尤其适用于贴壁细胞。对于活跃的组蛋白标记如H3K4me3 ,H3K27ac,起始细胞用量甚至可降低至单细胞水平。[2]
原理:在96孔板中加入细胞,经固定,染色后加入一抗与目标蛋白结合,随后加入ChIL探针(由二抗和ChIL DNA组成),探针中的ChIL DNA经Tn5转座酶整合到目标蛋白所在基因组DNA附近,随后T7 RNA 聚合酶经ChIL DNA中的启动子启动转录,以此处基因组DNA为模板合成RNA,经DNase I消化和裂解释放RNA,以纯化的RNA建库测序。
3.Drop-ChIP:
Drop-ChIP:使用了特定的微流控装置,分辨率可达到单细胞水平。该技术不仅可以在单细胞水平研究转录因子结合位点及组蛋白修饰,还可以从细胞特异性角度研究不同细胞间染色质的变异程度。我们认为,整合单细胞染色质和单细胞表达数据,可以使调控元件与靶基因更精确地耦合,并更深入地了解它们的功能动力学和关系。[3]
原理:首先,将待研究的细胞与裂解液,MNase混合进行染色质消化,另外设计一个包含很多种不同接头的液滴,在微流控装置上反应,使得每一个细胞液滴与一种接头液滴混合,同时与含有DNA连接酶的buffer液滴混合。这个过程中,接头序列自动连接到裂解的染色质片段两端,进而进行细胞裂解,使用特异性抗体对目标蛋白进行沉淀,对富集后的DNA进行测序。与已有基因组序列比对即可知道目标蛋白作用位点。
[1]. 1: Kaya-OkurHS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, Ahmad K,Henikoff S.CUT&Tag for efficient epigenomic profiling of small samples and singlecells. Nat Commun. 2019 Apr 29;10(1):1930.
[2]. Harada A,Maehara K, Handa T, Arimura Y, Nogami J, Hayashi-Takanaka Y, Shirahige K,Kurumizaka H, Kimura H, Ohkawa Y. A chromatin integration labelling method enablesepigenomic profiling with lower input. Nat Cell Biol. 2019 Feb;21(2):287-296.
[3]. Rotem A, RamO, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE. Single-cellChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol. 2015Nov;33(11):1165-72
易基因:肠道菌群:早产儿出生后不同时间点肠道微生物定植的动态变化|项目文章
易基因微生物组学测序分析成果见刊《Front Microbiol》
2023年02月17日,中国农业科学院深圳农业基因组研究所Adnan Khan、云南省第一人民医院米弘瑛为共同第一作者,中山大学附属第六医院郝虎/李思涛、南方医科大学附属佛山市妇幼保健院戴怡蘅为论文共同通讯作者在《Front Microbiol》杂志以“Dynamic changes of the gut microbial colonization in preterm infants with different time points after birth”为题发表研究论文。该研究通过微生物组学的16s RNA等实验揭示了12名早产儿在出生后第1、7、14、21、28、42天六个时间点(C1、C2、C3、C4、C5、C6)肠道微生物定植过程中的动态变化,为早产儿在出生后不同时间点针对性细菌治疗提供新的视角。深圳易基因科技为本研究提供微生物组测序分析服务。
标题:Dynamic changes of the gut microbial colonization in preterm infants with different time points after birth 早产儿出生后不同时间点肠道微生物定植的动态变化
时间:2023-02-17
期刊:Frontiers in Microbiology
影响因子:IF 6.064
技术平台:16S rRNA等
摘要:
与早产相关的风险在所有妊娠中分布不均衡。在孕早期,坏死性小肠结肠炎(NEC)和晚发性败血症(LOS)等并发症更为常见,且与肠道微生物组组成变化相关。常规细菌培养技术表明,早产儿肠道微生物组的定殖与健康足月儿的肠道微生物组定殖有显著差异。本研究旨在分析早产儿在不同时间点(出生后第1、7、14、21、28、42 天)粪便微生物组的动态变化。研究招募了2017年1月至2017年12月在中山大学附属第六医院住院的12名早产儿,利用16S rRNA基因测序分析对130份早产儿粪便样本进行分析。研究结果表明早产儿粪便微生物群的定植过程在出生后的不同时间点呈高度动态变化,即Exiguobacterium、Acinetobacter和Citrobacter随着年龄增长表现出丰度下降模式,而在42天的早产儿粪便微生物群发育过程中,肠球菌(克雷伯氏菌和大肠杆菌)菌群逐渐生长成为主要微生物群。而早产儿肠道双歧杆菌的定植相对较晚,并没有迅速成为主要的微生物群。此外,研究结果还表明Chryseobacterium菌群的存在,且在不同时间点的定殖不同。本研究为早产儿出生后不同时间点针对性细菌治疗提供新的视角。
材料和方法:
表1:12例早产儿的一般临床数据
图1:研究流程图
- 选择实验组以鉴定组间微生物群的差异
- 标准化技术因素和样品处理,以控制过程的每个步骤引入的变化。从临床变量到样本处理,收集和管理每个样本各个方面的metadata做数据分析。
实验结果
(1)早产儿微生物群落组成的综合表征
研究人员使用来自12名早产儿出生后多个时间点(C1-C6)的130份粪便样品的16S rRNA基因数据来评估微生物多样性的时间相关变化,鉴定不同时间点微生物组中的最大丰度和富集驱动因子,并分析粪便微生物在早产儿健康发育过程中的表型和功能。
图2:早产儿6个时间点肠道微生物类群相对丰度的比较。
- 从门(Phyla)水平上分析6个时间点肠道微生物群的组成。
- 组间(C1–C6)的F/P比值箱形图。
- 六个时间点组间肠道微生物门(Phyla)的重叠分析Venn图。包括在六个以上的粪便样本中检测到的门。
- 使用Shannon指数分析六组细菌群落的α多样性和丰度。
- 使用Bray–Curtis差异的NMDS进行Beta(β)多样性分析。
- 不同时间点组间肠道微生物群的未加权Unifrac距离(Unweighted Unifrac distance)。使用非参数Kruskal–Wallis检验和Tukey检验计算成对p值:*p<0.05、**p<0.01、***p<0.001、****p<0.0001为具有显著性。
(2)早产儿出生后不同时间点肠道菌群中丰度最高的属(genera)
对丰度最高的属分析与β多样性分析结果一致,表明丰度最高的属多样性随时间推移而增加。结果表明丰度最高的属(Exiguobacterium、Prevotella、Acinetobacter、Pseudomonas、Enterococcus、Bifidobacterium、Escherichia-Shigella、Klebsiella、Gardnerella、Streptococcus和Chryseobacterium)发生了时间依赖性变化,且在各组区系结构中的样本异质性增加。图3A显示了不同时间点组中前40个丰度最高的属,其中一半为所有时间点组间共有(图3B)。图3C中的热图通过聚类分析表明,C1-C3中的粪便微生物群由Exiguobacterium、Pseudomonas、Lactococcus、Brevundimonas、Burkholderiaceae和Thermus组成;C3-C5中为Enterococcus富集区,在C6中为Escherichia−Shigella富集区。
图3:丰度最高的肠道微生物属在早产儿6个不同时间点组中富集情况。
- 6个时间点(C1-C6)内丰度最高的前40个属
- 6个不同时间点组间肠道微生物属的重叠分析Venn图。
- 6个时间点组间肠道微生物群中差异表达最显著的属。名称前面的单个字母(g、f和c)分别表示属、门和纲。
(3)早产儿6个时间点肠道微生物组的差异分类
为进一步表征六个时间点组间肠道微生物群的动态变化,本研究在不同的分类水平上对这些分类群的系统发育变化进行时间点依赖性分布分析,即:属、门、纲、目、科、种。
图4:在早产儿的六个时间点组中富集的显著差异分类群。
A-F. 早产儿不同时间点肠道优势微生物属(genus)水平的动态变化。
- 从门到属水平的显著差异分类群系统发育分支图。微生物类用字母表示。每个节点表示不同分类级别的一个分类单元。节点颜色是在相关队列(C1-C6)中观察到的丰度较高的分类群。
- 具有显著差异的物种LDA得分大于预估值;默认分数为2.5。直方图长度表示LDA分数;表示不同群体之间具有存在显著差异的物种影响影响程度。
(4)早产儿年龄依赖性肠道微生物群网络及其关键驱动属
研究人员利用稀疏成分相关性(SparCC)分析来研究所有时间依赖性样品中肠道微生物之间的相互作用。所有相对丰度≥0.1%的属都包含在网络中。Exiguobacterium(Firmicutes)网络与不动杆菌(Proteobacteria)、假单胞菌(Proteobacteria)和乳球菌(Firmicutes)的相关性最强。同样,Serratia(Proteobacteria)也与Veillonella(Firmicutes)呈现出强相关性。但Streptococcus、Staphylococcus、Enterococcus、Bacillus (Firmicutes)与其他属的相关性最弱。前12个显著差异属的热图和层次聚类分析表明了样本的相关性(|FC|>1、p<0.05)。
图5:早产儿年龄依赖性肠道微生物群网络及其关键驱动属
- 根据SparCC结果构建早产儿的微生物交互网络,并使用Cytoscape进行可视化。(C1)出生后第1天、(C2)出生后第7天、(C3)出生后第14 天、(C4)出生后第21天、(C5)出生后第28天、(C6)出生后第42天。网络包含平均丰度>0.1%的属、相关性|R|>0.2和p<0.05,节点颜色表示属的门,节点大小表示加权节点连接,边缘颜色和厚度表示相关性。
- 所有时间依赖性样本(C1–C6)中前12个显著差异的微生物属热图。红色对应于上调的基因产物,绿色对应于下调的基因产物。行表示每个差异表达的门,列表示每个样本
(5)基于分类组成预测微生物代谢功能
为更好了解早产儿肠道微生物组、疾病易感性和细菌代谢的功能差异,研究人员利用PICRUSt通过分析生成的OUT及其参考基因组数据库的16S rRNA数据中的基因,来预测细菌宏基因组的基因家族。结果表明,在早产儿C1、C2、C3、C5和C6组中,分别有63个、1个、5个、22个和24个KEGG通路显著过表达。C1、C2、C3和C5组中鉴定的大多数通路为维持生命所必需,包括ABC转运蛋白、核苷酸代谢、抗坏血酸、醛酸盐代谢、碳水化合物、蛋白质代谢二恶英降解和脂质代谢。描述代谢过程和免疫状态的许多通路在所有组中均过度表达(over-represented,即富集enriched)。所有这些通路对于影响微生物在环境中的分布、存活和增殖至关重要,结果还需要使用宏基因组学来进一步证实。
图6:早产儿出生后6个时间点(C1、C2、C3、C5、C6)的组间功能模块相对丰度比较,使用从PICRUSt生成的线性判别分析效应量(LEfSe)分析。35个、1个、5个、18个和15个KEGG通路分别在C1、C2、C3、C4和C6中显著富集。数据显示,所有组间预测的细菌代谢功能存在差异。LDA评分>2.5表示具有显著差异的通路。
结论:
本研究结果将有助于更好地了解早产儿出生后肠道微生物群变化对健康的长期影响,本研究首次对出生42日龄以内的早产儿粪便微生物组组成进行研究。结果表明早产儿粪便微生物群在出生后一天左右较为简单,Exiguobacterium、Acinetobacter和Citrobacter占整个微生物群的83%。随着时间的推移,这三个主要细菌家族的相对丰度下降,而Enterococcus、Klebsiella、Escherichia菌群逐渐增加,并成为主要菌群,其中任何一种细菌都可能引起消化道感染。同时,早产儿肠道双歧杆菌的定植相对较晚,并没有迅速成为主要的微生物群。而新生儿重症监护室早产儿的粪便微生物群中存在Chrysobacterium菌群,表明其健康存在额外风险。本研究旨在为比较和理解早产儿肠道微生物群的时间依赖性动态变化开辟新的可能性,并为早产儿在出生后不同时间点针对性细菌治疗提供新的视角。
参考文献:https://www.pmop.cn/pubmed/36876108
相关阅读:
IF14 项目文章 | 东北农业大学张志刚团队:基于多组学分析噻虫啉暴露对日本鹌鹑微生物-肠-肝轴的影响
项目文章 | 90天见刊,易基因m6A RNA甲基化(MeRIP)+转录组组学研究
以上是关于易基因 ChIP-seq技术简介的主要内容,如果未能解决你的问题,请参考以下文章