Python实现性能自动化测试竟然如此简单
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python实现性能自动化测试竟然如此简单相关的知识,希望对你有一定的参考价值。
参考技术A
一、思考❓❔
1.什么是性能自动化测试?
2.Python中的性能自动化测试库?
locust库
二、基础操作
1.安装locust
安装成功之后,在cmd控制台将会新增一条命令,可输入如下命令查看:
2.基本用法
三、综合案例演练
1.编写自动化测试脚本
2.使用命令行运行
3.打开web ui界面进行配置
设置并发用户数为10,每5秒创建一个用户
压测过程截图
美轮美奂的压测报告
压测失败详情
下载压测统计数据
下载的压测统计数据csv文件
六、总结
出处:https://www.cnblogs.com/keyou1/
通过 Pyecharts 绘制可视化地球竟然如此简单!
作者 | 周萝卜
来源 | 萝卜大杂烩
今天我们使用 Pyecharts 制作一个地球可视化项目,一起来看看吧
Let’s go!
数据处理
这里我们使用全球新冠感染人数的数据集作为我们的测试数据,先来看看数据的整体情况
import pandas as pd
df = pd.read_csv("owid-covid-data.csv")
df_0608 = df[df['date'] == '2022-06-08']
df_new = df_0608[pd.isna(df_0608['continent']) == False]
df_new
Output:
我们选取0608这一天的数据,可以看到 total_cases 字段就是国家当前的累计总确诊人数
下面就提取国家和确诊人数
covid_data = df_new[['location', 'total_cases']].values.tolist()
Output:
Pyecharts 绘图
通过 Pyecharts 绘制地球图,在官网上有很详细的例子,我们直接套用即可
首先导入相关库
import pyecharts.options as opts
from pyecharts.charts import MapGlobe
定义地球图函数并绘制
data = [x for _, x in covid_data]
low, high = min(data), max(data)
c = (
MapGlobe()
.add_schema()
.add(
maptype="world",
series_name="World Covid Data",
data_pair=covid_data,
is_map_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(
min_=low,
max_=high,
range_text=["max", "min"],
is_calculable=True,
range_color=["lightskyblue", "yellow", "orangered"],
)
)
)
c.render_notebook()
这样我们得到如下全球各国新冠确诊人数分布图
部署为 Web 服务
当前我们所有的代码都是运行在 Jupyter 当中的,如果要分享给其他人,并不是十分的方便,我们可以将整体代码部署成一个 Web 服务,这样其他人就可以方便的通过浏览器来查看该地球图了
我们先创建项目目录,命名为 flask_map
,再将本地安装的 Pyecharts
目录下的 templates
文件夹拷贝到该目录下,同时再创建 data
文件夹和 main.py
文件,Pyecharts 模板位置如下:
pyecharts.render.templates
我们将数据集 owid-covid-data.csv
放到 data
文件夹下,再编写 main.py
文件
# coding = utf-8
"""
======================
@author:luobo
@time:2022/7/2:14:32
@email:
@File: main.py
======================
"""
from flask import Flask, render_template
from jinja2 import Markup, Environment, FileSystemLoader
from pyecharts.globals import CurrentConfig
# 关于 CurrentConfig,可参考 [基本使用-全局变量]
CurrentConfig.GLOBAL_ENV = Environment(loader=FileSystemLoader("./templates"))
from pyecharts import options as opts
from pyecharts.charts import MapGlobe
import pandas as pd
df = pd.read_csv("data/owid-covid-data.csv")
df_0608 = df[df['date'] == '2022-06-08']
df_new = df_0608[pd.isna(df_0608['continent']) == False]
covid_data = df_new[['location', 'total_cases']].values.tolist()
app = Flask(__name__, static_folder="templates")
def Map_base():
data = [x for _, x in covid_data]
low, high = min(data), max(data)
c = (
MapGlobe()
.add_schema()
.add(
maptype="world",
series_name="World Covid Data",
data_pair=covid_data,
is_map_symbol_show=False,
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(
min_=low,
max_=high,
range_text=["max", "min"],
is_calculable=True,
range_color=["lightskyblue", "yellow", "orangered"],
)
)
)
return c
@app.route("/")
def index():
c = Map_base()
c.render('templates/Map.html')
return render_template("Map.html")
if __name__ == "__main__":
app.run()
这样,当我们启动 Flask 服务器之后,只需要访问根目录(/),就会在 templates
目录下生成 Map.html
文件,也会在浏览器正常展示地球图了
至于如何将本地 Web 应用部署到公网上,我们在后面的文章中再介绍吧!
往期回顾
分享
点收藏
点点赞
点在看
以上是关于Python实现性能自动化测试竟然如此简单的主要内容,如果未能解决你的问题,请参考以下文章