Redis哨兵集群
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Redis哨兵集群相关的知识,希望对你有一定的参考价值。
参考技术A Redis-Sentinel是redis官方推荐的高可用性解决方案,当用redis作master-slave的高可用时,如果master本身宕机,redis本身或者客户端都没有实现主从切换的功能。
而redis-sentinel就是一个独立运行的进程,用于监控多个master-slave集群,
自动发现master宕机,进行自动切换slave > master
每个Sentinel以每秒钟一次的频率向它所知的Master,Slave以及其他 Sentinel 实例发送一个 PING 命令
如果一个实例(instance)距离最后一次有效回复 PING 命令的时间超过 down-after-milliseconds 选项所指定的值, 则这个实例会被 Sentinel 标记为主观下线。
如果一个Master被标记为主观下线,则正在监视这个Master的所有 Sentinel 要以每秒一次的频率确认Master的确进入了主观下线状态。
当有足够数量的 Sentinel(大于等于配置文件指定的值)在指定的时间范围内确认Master的确进入了主观下线状态, 则Master会被标记为客观下线
在一般情况下, 每个 Sentinel 会以每 10 秒一次的频率向它已知的所有Master,Slave发送 INFO 命令
当Master被 Sentinel 标记为客观下线时,Sentinel 向下线的 Master 的所有 Slave 发送 INFO 命令的频率会从 10 秒一次改为每秒一次
若没有足够数量的 Sentinel 同意 Master 已经下线, Master 的客观下线状态就会被移除。
若 Master 重新向 Sentinel 的 PING 命令返回有效回复, Master 的主观下线状态就会被移除。
主观下线和客观下线
主观下线:Subjectively Down,简称 SDOWN,指的是当前 Sentinel 实例对某个redis服务器做出的下线判断。
客观下线:Objectively Down, 简称 ODOWN,指的是多个 Sentinel 实例在对Master Server做出 SDOWN 判断,并且通过 SENTINEL is-master-down-by-addr 命令互相交流之后,得出的Master Server下线判断,然后开启failover.
SDOWN适合于Master和Slave,只要一个 Sentinel 发现Master进入了ODOWN, 这个 Sentinel 就可能会被其他 Sentinel 推选出, 并对下线的主服务器执行自动故障迁移操作。
ODOWN只适用于Master,对于Slave的 Redis 实例,Sentinel 在将它们判断为下线前不需要进行协商, 所以Slave的 Sentinel 永远不会达到ODOWN。
Redis主从复制可将主节点数据同步给从节点,从节点此时有两个作用:
但是问题是:
那么这个问题,redis-sentinel就可以解决了
Redis的一个进程,但是不存储数据,只是监控redis
本实验是在测试环境下,因此只准备一台linux服务器用作环境!!
服务器环境,一台即可完成操作
所有配置文件如下
总体redis配置文件如下,6379为master,6380和6381为slave
redis-6380.conf slave配置文件详解,6381端口的配置文件,仅仅和6380端口不一样
在主节点上查看主从通信关系
在从节点上查看主从关系(6380、6379)
此时可以在master上写入数据,在slave上查看数据,此时主从复制配置完成
redis-sentinel-26379.conf配置文件写入如下信息
redis-sentinel-26380.conf和redis-sentinel-26381.conf的配置仅仅差异是port(端口)的不同。
然后启动三个sentinel哨兵
此时查看哨兵是否成功通信
实例的思路
首先查看三个Redis的进程状态
第一个
第二个
第三个
直接干掉master,然后等待其他两个节点是否能自动被哨兵sentienl,切换为master节点
此时查看两个slave的状态
然后会发现slave节点成为master节点!!
Redis的哨兵模式和集群模式
参考技术A 原文地址: https://www.cnblogs.com/itplay/p/11098990.html哨兵模式 #
哨兵模式是redis高可用的实现方式之一
使用一个或者多个哨兵(Sentinel)实例组成的系统,对redis节点进行监控,在主节点出现故障的情况下,能将从节点中的一个升级为主节点,进行故障转义,保证系统的可用性。
哨兵们是怎么感知整个系统中的所有节点(主节点/从节点/哨兵节点)的 #
首先主节点的信息是配置在哨兵(Sentinel)的配置文件中
哨兵节点会和配置的主节点建立起两条连接命令连接和订阅连接
哨兵会通过命令连接每10s发送一次INFO命令,通过INFO命令,主节点会返回自己的run_id和自己的从节点信息
哨兵会对这些从节点也建立两条连接命令连接和订阅连接
哨兵通过命令连接向从节点发送INFO命令,获取到他的一些信息
a. run_id
b. role
c. 从服务器的复制偏移量 offset
d. 等
因为哨兵对与集群中的其他节点(主从节点)当前都有两条连接,命令连接和订阅连接
a. 通过命令连接向服务器的_sentinel:hello频道发送一条消息,内容包括自己的ip端口、run_id、配置纪元(后续投票的时候会用到)等
b. 通过订阅连接对服务器的_sentinel:hello频道做了监听,所以所有的向该频道发送的哨兵的消息都能被接受到
c. 解析监听到的消息,进行分析提取,就可以知道还有那些别的哨兵服务节点也在监听这些主从节点了,更新结构体将这些哨兵节点记录下来
d. 向观察到的其他的哨兵节点建立命令连接----没有订阅连接
哨兵模式下的故障迁移 #
主观下线
哨兵(Sentinel)节点会每秒一次的频率向建立了命令连接的实例发送PING命令,如果在down-after-milliseconds毫秒内没有做出有效响应包括(PONG/LOADING/MASTERDOWN)以外的响应,哨兵就会将该实例在本结构体中的状态标记为SRI_S_DOWN主观下线
客观下线
当一个哨兵节点发现主节点处于主观下线状态是,会向其他的哨兵节点发出询问,该节点是不是已经主观下线了。如果超过配置参数quorum个节点认为是主观下线时,该哨兵节点就会将自己维护的结构体中该主节点标记为SRI_O_DOWN客观下线
询问命令SENTINEL is-master-down-by-addr <ip> <port> <current_epoch> <run_id>
参数意义
ip/port当前认为下线的主节点的ip和端口
current_epoch配置纪元
run_id*标识仅用于询问是否下线
有值标识该哨兵节点希望对方将自己设置为leader
询问时用*,选举时用run_id
leader选举
在认为主节点客观下线的情况下,哨兵节点节点间会发起一次选举,命令还是上面的命令SENTINEL is-master-down-by-addr <ip> <port> <current_epoch> <run_id>,只是run_id这次会将自己的run_id带进去,希望接受者将自己设置为主节点。如果超过半数以上的节点返回将该节点标记为leader的情况下,会有该leader对故障进行迁移
故障迁移
在从节点中挑选出新的主节点
a. 通讯正常
b. 优先级排序
c. 优先级相同是选择offset最大的
将该节点设置成新的主节点 SLAVEOF no one,并确保在后续的INGO命令时,该节点返回状态为master
将其他的从节点设置成从新的主节点复制, SLAVEOF命令
将旧的主节点变成新的主节点的从节点
优缺点 #
优点
高可用,在主节点故障时能实现故障的转移
缺点:好像没办法做到水平拓展,如果内容很大的情况下
集群模式 #
官方提供的分布式方案(槽指派/重新分片/故障转移)
集群内的节点,都会有个数据结构存储整个集群内的节点信息
//整体structclusterStateclusterNode *mySelf; .... dict *nodes;//集群内的所有节点// 单个节点structclusterNodecharname[];charip[];intport; clusterLink *link;//保存节点间,连接的信息intflags;//状态标记//节点间连接的信息structclusterLinkmstime_tctime;//创建时间intfd;//tcp套接字描述符sds sndbuf;// 输出缓存区sds rcvbuf;//输入缓存区structclusterNode*node;
槽指派 #
redis集群可以被分为16384个槽,只有这些槽全被指派了处理的节点的情况下,集群的状态才能是上线状态(ok)
操作redis集群的时候,将key作为参数,就可以计算出对应的处理槽上,所以存储等操作都应该在该槽对应的节点上。通过这种方式,可以完美的实现集群存储的水平拓展。
defslot_number(key):returnCRC16(key) &16383//得到的结果就是槽的序号
槽指派的信息是怎么存储的
structclusterStateclusterNode *slots[16384] structclusterNodeunsignedcharslots[16384/8]
通过上面两个结构体中的定义可以看出,槽指派的信息是分了两种方式,保存在结构体里面。
分两种存储的好处
1. 如果需要判断某一个节点负责的槽,只需要获取方式二中的数组做判断就可以
2.如果找某个槽是哪个节点负责,只需要获取方式一的列表,一查就知道
重新分片 #
将已经指派给节点的槽,重新执行新的节点。
故障转移 #
发现故障节点
集群内的节点会向其他节点发送PING命令,检查是否在线
如果未能在规定时间内做出PONG响应,则会把对应的节点标记为疑似下线
集群中一半以上负责处理槽的主节点都将主节点X标记为疑似下线的话,那么这个主节点X就会被认为是已下线
向集群广播主节点X已下线,大家收到消息后都会把自己维护的结构体里的主节点X标记为已下线
从节点选举
当从节点发现自己复制的主节点已下线了,会向集群里面广播一条消息,要求所有有投票权的节点给自己投票(所有负责处理槽的主节点都有投票权)
主节点会向第一个给他发选举消息的从节点回复支持
当支持数量超过N/2+1的情况下,该从节点当选新的主节点
故障的迁移
新当选的从节点执行 SLAVEOF no one,修改成主节点
新的主节点会撤销所有已下线的老的主节点的槽指派,指派给自己
新的主节点向集群发送命令,通知其他节点自己已经变成主节点了,负责哪些槽指派
新的主节点开始处理自己负责的槽的命令
集群模式和哨兵模式的区别 #
哨兵模式监控权交给了哨兵系统,集群模式中是工作节点自己做监控
哨兵模式发起选举是选举一个leader哨兵节点来处理故障转移,集群模式是在从节点中选举一个新的主节点,来处理故障的转移
转自:https://www.jianshu.com/p/d6d2325a5ec7
以上是关于Redis哨兵集群的主要内容,如果未能解决你的问题,请参考以下文章