C11新特性之智能指针
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了C11新特性之智能指针相关的知识,希望对你有一定的参考价值。
参考技术A程序都是在堆上存储动态分配对象,而它的生存期是由程序来控制的。这就意味着当动态对象不再使用的时候,我们需要显式的将它销毁。
c98提出了一个智能指针auto_ptr为了避免人们使用指针时忘记释放内存。但是因为auto_ptr的总总缺点,使人们在开发过程碰到了各种坑,所以才有了c11新的三个智能指针。
移动语义是c11提出的,c11最大的特性就是拥有了移动而不是拷贝对象的能力,这就大幅度的提升了性能。
为了让自定义类型的对象也支持移动操作,我们为它定义了 移动构造函数 和 移动赋值运算符 。
移动构造函数是对资源进行窃取而不是拷贝。它的第一个参数是该类类型的右值引用,移动构造函数除了完成资源移动外,还必须保证移动之后的原对象处于 有效的、可析构 的状态(将原对象值赋值给新对象,然后把原对象属性值置空,特别是指针成员置空!那么此时原对象就是处于可析构的安全状态)。
看了memory里的部分源码,发现有一个在c11之前没有出现过的关键字explict
有了explict关键字的限定,防止类构造函数进行隐式转换
它禁止拷贝语义,但是是通过移动语义(什么是移动语义?上面有解答)来实现的。它“唯一”拥有它所指的对象。
从下面的unique_ptr的构造函数就可以发现它是禁止拷贝语义的。
但是如果想要切换指针的控制权,可以使用下面的移动构造函数来进行控制权的转化,这里用到forward转发(上一节可以知道forward转发可以返回该参数本来对应的类型的引用),其实这里就是把右值对象移动给左值,并且把右值对象置空
了解了前面的auto_ptr和unique_ptr,再来理解shared_ptr非常容易。
与前面两者不同的是,shared_ptr允许多个指针指向相同对象,前两者在切换控制权时,会将前面的清除,而shared_ptr不会。
当删除其中一个智能指针时,另外两个并不会受到变化。因为此时内存中存在着引用计数,每添加一个shared_ptr,引用计数+1,每次调用析构函数,引用计数-1。直到引用计数减为0,才会释放该块内存。
auto_ptr和unique_ptr都可以通过move函数转换成shared_ptr类型
当使用shared_ptr时,最需要注意的就是 避免循环引用 ,它会造成堆内存无法正常释放,出现内存泄露。如何解决这个问题呢,这时候就要用到weak_ptr的lock()锁
我们最好在使用weak_ptr访问对象时,使用lock()函数,它可以检测weak_ptr访问的对象是否存在,如果存在,返回一个内存中的shared_ptr对象,不存在,返回一个nullptr的shared_ptr
当双向链表的前驱指针和后继指针使用了shared_pre,如下
由于使用了shared_pre,一块内存空间有两个对象进行管理,而无法使引用计数为0,那么编译器就无法自动释放内存。
使用弱引用,弱引用并不会修改对象的引用计数,也就是弱引用并不会对对象的内存进行管理。但是它能检测到引用对象是否被释放,避免了内存泄露。weak_pre就是弱引用。
C++11新特性:25~27—— C++11 shared_ptr/unique_ptr/weak_ptr 智能指针
原文地址:
http://c.biancheng.net/view/7898.html
http://c.biancheng.net/view/vip_8672.html
http://c.biancheng.net/view/vip_8673.html
在实际的 C++ 开发中,我们经常会遇到诸如程序运行中突然崩溃、程序运行所用内存越来越多最终不得不重启等问题,这些问题往往都是内存资源管理不当造成的。比如:
- 有些内存资源已经被释放,但指向它的指针并没有改变指向(成为了野指针),并且后续还在使用;
- 有些内存资源已经被释放,后期又试图再释放一次(重复释放同一块内存会导致程序运行崩溃);
- 没有及时释放不再使用的内存资源,造成内存泄漏,程序占用的内存资源越来越多。
针对以上这些情况,很多程序员认为 C++ 语言应该提供更友好的内存管理机制,这样就可以将精力集中于开发项目的各个功能上。
事实上,显示内存管理的替代方案很早就有了,早在 1959 年前后,就有人提出了“垃圾自动回收”机制。所谓垃圾,指的是那些不再使用或者没有任何指针指向的内存空间,而“回收”则指的是将这些“垃圾”收集起来以便再次利用。
如今,垃圾回收机制已经大行其道,得到了诸多编程语言的支持,例如 Java、Python、C#、PHP 等。而 C++ 虽然从来没有公开得支持过垃圾回收机制,但 C++98/03 标准中,支持使用 auto_ptr 智能指针来实现堆内存的自动回收;C++11 新标准在废弃 auto_ptr 的同时,增添了 unique_ptr、shared_ptr 以及 weak_ptr 这 3 个智能指针来实现堆内存的自动回收。
所谓智能指针,可以从字面上理解为“智能”的指针。具体来讲,智能指针和普通指针的用法是相似的,不同之处在于,智能指针可以在适当时机自动释放分配的内存。也就是说,使用智能指针可以很好地避免“忘记释放内存而导致内存泄漏”问题出现。由此可见,C++ 也逐渐开始支持垃圾回收机制了,尽管目前支持程度还有限。
C++ 智能指针底层是采用引用计数的方式实现的。简单的理解,智能指针在申请堆内存空间的同时,会为其配备一个整形值(初始值为 1),每当有新对象使用此堆内存时,该整形值 +1;反之,每当使用此堆内存的对象被释放时,该整形值减 1。当堆空间对应整形值为 0 时,即表明不再有对象使用它,该堆空间就会被释放掉。
接下来,我们将分别对 shared_ptr、unique_ptr 以及 weak_ptr 这 3 个智能指针的特性和用法做详细的讲解,本节先介绍 shared_ptr 智能指针。
C++11 shared_ptr智能指针
实际上,每种智能指针都是以类模板的方式实现的,shared_ptr 也不例外。shared_ptr<T>(其中 T 表示指针指向的具体数据类型)的定义位于<memory>
头文件,并位于 std 命名空间中,因此在使用该类型指针时,程序中应包含如下 2 行代码:
#include <memory>
using namespace std;
注意,第 2 行代码并不是必须的,也可以不添加,则后续在使用 shared_ptr 智能指针时,就需要明确指明std::。
值得一提的是,和 unique_ptr、weak_ptr 不同之处在于,多个 shared_ptr 智能指针可以共同使用同一块堆内存。并且,由于该类型智能指针在实现上采用的是引用计数机制,即便有一个 shared_ptr 指针放弃了堆内存的“使用权”(引用计数减 1),也不会影响其他指向同一堆内存的 shared_ptr 指针(只有引用计数为 0 时,堆内存才会被自动释放)。
1、shared_ptr智能指针的创建
shared_ptr 类模板中,提供了多种实用的构造函数,这里给读者列举了几个常用的构造函数(以构建指向 int 类型数据的智能指针为例)。
1) 通过如下 2 种方式,可以构造出 shared_ptr<T> 类型的空智能指针:
std::shared_ptr<int> p1; //不传入任何实参
std::shared_ptr<int> p2(nullptr); //传入空指针 nullptr
注意,空的 shared_ptr 指针,其初始引用计数为 0,而不是 1。
2) 在构建 shared_ptr 智能指针,也可以明确其指向。例如:
std::shared_ptr<int> p3(new int(10));
由此,我们就成功构建了一个 shared_ptr 智能指针,其指向一块存有 10 这个 int 类型数据的堆内存空间。
同时,C++11 标准中还提供了 std::make_shared<T> 模板函数,其可以用于初始化 shared_ptr 智能指针,例如:
std::shared_ptr<int> p3 = std::make_shared<int>(10);
以上 2 种方式创建的 p3 是完全相同。
3) 除此之外,shared_ptr 模板还提供有相应的拷贝构造函数和移动构造函数,例如:
//调用拷贝构造函数
std::shared_ptr<int> p4(p3);//或者 std::shared_ptr<int> p4 = p3;
//调用移动构造函数
std::shared_ptr<int> p5(std::move(p4)); //或者 std::shared_ptr<int> p5 = std::move(p4);
有关拷贝构造函数,读者可阅读《C++拷贝构造函数》一节做系统了解;有关移动构造函数,读者可阅读《C++移动构造函数》做详细了解;有关 move() 函数的功能和用法,读者可阅读《C++11 move()》一节。
如上所示,p3 和 p4 都是 shared_ptr 类型的智能指针,因此可以用 p3 来初始化 p4,由于 p3 是左值,因此会调用拷贝构造函数。需要注意的是,如果 p3 为空智能指针,则 p4 也为空智能指针,其引用计数初始值为 0;反之,则表明 p4 和 p3 指向同一块堆内存,同时该堆空间的引用计数会加 1。
而对于 std::move(p4) 来说,该函数会强制将 p4 转换成对应的右值,因此初始化 p5 调用的是移动构造函数。另外和调用拷贝构造函数不同,用 std::move(p4) 初始化 p5,会使得 p5 拥有了 p4 的堆内存,而 p4 则变成了空智能指针。
注意,同一普通指针不能同时为多个 shared_ptr 对象赋值,否则会导致程序发生异常。例如:
int* ptr = new int;
std::shared_ptr<int> p1(ptr);
std::shared_ptr<int> p2(ptr);//错误
4) 在初始化 shared_ptr 智能指针时,还可以自定义所指堆内存的释放规则,这样当堆内存的引用计数为 0 时,会优先调用我们自定义的释放规则。
在某些场景中,自定义释放规则是很有必要的。比如,对于申请的动态数组来说,shared_ptr 指针默认的释放规则是不支持释放数组的,只能自定义对应的释放规则,才能正确地释放申请的堆内存。
对于申请的动态数组,释放规则可以使用 C++11 标准中提供的 default_delete<T> 模板类,我们也可以自定义释放规则:
//指定 default_delete 作为释放规则
std::shared_ptr<int> p6(new int[10], std::default_delete<int[]>());
//自定义释放规则
void deleteInt(int*p)
delete []p;
//初始化智能指针,并自定义释放规则
std::shared_ptr<int> p7(new int[10], deleteInt);
实际上借助 lambda 表达式,我们还可以像如下这样初始化 p7,它们是完全相同的:
std::shared_ptr<int> p7(new int[10], [](int* p) delete[]p; );
shared_ptr<T> 模板类还提供有其它一些初始化智能指针的方法,感兴趣的读者可前往讲解 shared_ptr 的官网做系统了解。
2、shared_ptr模板类提供的成员方法
为了方便用户使用 shared_ptr 智能指针,shared_ptr 模板类还提供有一些实用的成员方法,它们各自的功能如表 1 所示。
成员方法名 | 功 能 |
---|---|
operator=() | 重载赋值号,使得同一类型的 shared_ptr 智能指针可以相互赋值。 |
operator*() | 重载 * 号,获取当前 shared_ptr 智能指针对象指向的数据。 |
operator->() | 重载 -> 号,当智能指针指向的数据类型为自定义的结构体时,通过 -> 运算符可以获取其内部的指定成员。 |
swap() | 交换 2 个相同类型 shared_ptr 智能指针的内容。 |
reset() | 当函数没有实参时,该函数会使当前 shared_ptr 所指堆内存的引用计数减 1,同时将当前对象重置为一个空指针;当为函数传递一个新申请的堆内存时,则调用该函数的 shared_ptr 对象会获得该存储空间的所有权,并且引用计数的初始值为 1。 |
get() | 获得 shared_ptr 对象内部包含的普通指针。 |
use_count() | 返回同当前 shared_ptr 对象(包括它)指向相同的所有 shared_ptr 对象的数量。 |
unique() | 判断当前 shared_ptr 对象指向的堆内存,是否不再有其它 shared_ptr 对象再指向它。 |
operator bool() | 判断当前 shared_ptr 对象是否为空智能指针,如果是空指针,返回 false;反之,返回 true。 |
除此之外,C++11 标准还支持同一类型的 shared_ptr 对象,或者 shared_ptr 和 nullptr 之间,进行 ==,!=,<,<=,>,>= 运算。
下面程序给大家演示了 shared_ptr 智能指针的基本用法,以及该模板类提供了一些成员方法的用法:
#include <iostream>
#include <memory>
using namespace std;
int main()
//构建 2 个智能指针
std::shared_ptr<int> p1(new int(10));
std::shared_ptr<int> p2(p1);
//输出 p2 指向的数据
cout << *p2 << endl;
p1.reset();//引用计数减 1,p1为空指针
if (p1)
cout << "p1 不为空" << endl;
else
cout << "p1 为空" << endl;
//以上操作,并不会影响 p2
cout << *p2 << endl;
//判断当前和 p2 同指向的智能指针有多少个
cout << p2.use_count() << endl;
return 0;
程序执行结果为:
10
p1 为空
10
1
C++11 unique_ptr智能指针
作为智能指针的一种,unique_ptr 指针自然也具备“在适当时机自动释放堆内存空间”的能力。和 shared_ptr 指针最大的不同之处在于,unique_ptr 指针指向的堆内存无法同其它 unique_ptr 共享,也就是说,每个 unique_ptr 指针都独自拥有对其所指堆内存空间的所有权。
这也就意味着,每个 unique_ptr 指针指向的堆内存空间的引用计数,都只能为 1,一旦该 unique_ptr 指针放弃对所指堆内存空间的所有权,则该空间会被立即释放回收。
unique_ptr 智能指针是以模板类的形式提供的,unique_ptr<T>(T 为指针所指数据的类型)定义在<memory>
头文件,并位于 std 命名空间中。因此,要想使用 unique_ptr 类型指针,程序中应首先包含如下 2 条语句:
#include <memory>
using namespace std;
第 2 句并不是必须的,可以不添加,则后续在使用 unique_ptr 指针时,必须标注std::。
unique_ptr智能指针的创建
考虑到不同实际场景的需要,unique_ptr<T> 模板类提供了多个实用的构造函数,这里给读者列举了几种常用的构造 unique_ptr 智能指针的方式。
1) 通过以下 2 种方式,可以创建出空的 unique_ptr 指针:
std::unique_ptr<int> p1();
std::unique_ptr<int> p2(nullptr);
2) 创建 unique_ptr 指针的同时,也可以明确其指向。例如:
std::unique_ptr<int> p3(new int);
由此就创建出了一个 p3 智能指针,其指向的是可容纳 1 个整数的堆存储空间。
和可以用 make_shared<T>() 模板函数初始化 shared_ptr 指针不同,C++11 标准中并没有为 unique_ptr 类型指针添加类似的模板函数。
3) 基于 unique_ptr 类型指针不共享各自拥有的堆内存,因此 C++11 标准中的 unique_ptr 模板类没有提供拷贝构造函数,只提供了移动构造函数。例如:
std::unique_ptr<int> p4(new int);
std::unique_ptr<int> p5(p4);//错误,堆内存不共享
std::unique_ptr<int> p5(std::move(p4));//正确,调用移动构造函数
值得一提的是,对于调用移动构造函数的 p4 和 p5 来说,p5 将获取 p4 所指堆空间的所有权,而 p4 将变成空指针(nullptr)。
4) 默认情况下,unique_ptr 指针采用 std::default_delete<T> 方法释放堆内存。当然,我们也可以自定义符合实际场景的释放规则。值得一提的是,和 shared_ptr 指针不同,为 unique_ptr 自定义释放规则,只能采用函数对象的方式。例如:
//自定义的释放规则
struct myDel
void operator()(int *p)
delete p;
;
std::unique_ptr<int, myDel> p6(new int);
//std::unique_ptr<int, myDel> p6(new int, myDel());
unique_ptr模板类提供的成员方法
为了方便用户使用 unique_ptr 智能指针,unique_ptr 模板类还提供有一些实用的成员方法,它们各自的功能如表 1 所示。
除此之外,C++11标准还支持同类型的 unique_ptr 指针之间,以及 unique_ptr 和 nullptr 之间,做 ==,!=,<,<=,>,>= 运算。
下面程序给大家演示了 unique_ptr 智能指针的基本用法,以及该模板类提供了一些成员方法的用法:
#include <iostream>
#include <memory>
using namespace std;
int main()
std::unique_ptr<int> p5(new int);
*p5 = 10;
// p 接收 p5 释放的堆内存
int * p = p5.release();
cout << *p << endl;
//判断 p5 是否为空指针
if (p5)
cout << "p5 is not nullptr" << endl;
else
cout << "p5 is nullptr" << endl;
std::unique_ptr<int> p6;
//p6 获取 p 的所有权
p6.reset(p);
cout << *p6 << endl;;
return 0;
程序执行结果为:
10
p5 is nullptr
10
C++11 weak_ptr智能指针
和 shared_ptr、unique_ptr 类型指针一样,weak_ptr 智能指针也是以模板类的方式实现的。weak_ptr<T>( T 为指针所指数据的类型)定义在<memory>
头文件,并位于 std 命名空间中。因此,要想使用 weak_ptr 类型指针,程序中应首先包含如下 2 条语句:
#include <memory>
using namespace std;
第 2 句并不是必须的,可以不添加,则后续在使用 unique_ptr 指针时,必须标注std::。
需要注意的是,C++11标准虽然将 weak_ptr 定位为智能指针的一种,但该类型指针通常不单独使用(没有实际用处),只能和 shared_ptr 类型指针搭配使用。甚至于,我们可以将 weak_ptr 类型指针视为 shared_ptr 指针的一种辅助工具,借助 weak_ptr 类型指针, 我们可以获取 shared_ptr 指针的一些状态信息,比如有多少指向相同的 shared_ptr 指针、shared_ptr 指针指向的堆内存是否已经被释放等等。
需要注意的是,当 weak_ptr 类型指针的指向和某一 shared_ptr 指针相同时,weak_ptr 指针并不会使所指堆内存的引用计数加 1;同样,当 weak_ptr 指针被释放时,之前所指堆内存的引用计数也不会因此而减 1。也就是说,weak_ptr 类型指针并不会影响所指堆内存空间的引用计数。
除此之外,weak_ptr<T> 模板类中没有重载 * 和 -> 运算符,这也就意味着,weak_ptr 类型指针只能访问所指的堆内存,而无法修改它。
1、weak_ptr指针的创建
创建一个 weak_ptr 指针,有以下 3 种方式:
1) 可以创建一个空 weak_ptr 指针,例如:
std::weak_ptr<int> wp1;
2) 凭借已有的 weak_ptr 指针,可以创建一个新的 weak_ptr 指针,例如:
std::weak_ptr<int> wp2 (wp1);
若 wp1 为空指针,则 wp2 也为空指针;反之,如果 wp1 指向某一 shared_ptr 指针拥有的堆内存,则 wp2 也指向该块存储空间(可以访问,但无所有权)。
3) weak_ptr 指针更常用于指向某一 shared_ptr 指针拥有的堆内存,因为在构建 weak_ptr 指针对象时,可以利用已有的 shared_ptr 指针为其初始化。例如:
std::shared_ptr<int> sp (new int);
std::weak_ptr<int> wp3 (sp);
由此,wp3 指针和 sp 指针有相同的指针。再次强调,weak_ptr 类型指针不会导致堆内存空间的引用计数增加或减少。
2、 weak_ptr模板类提供的成员方法
和 shared_ptr<T>、unique_ptr<T> 相比,weak_ptr<T> 模板类提供的成员方法不多,表 1 罗列了常用的成员方法及各自的功能。
成员方法 | 功 能 |
---|---|
operator=() | 重载 = 赋值运算符,是的 weak_ptr 指针可以直接被 weak_ptr 或者 shared_ptr 类型指针赋值。 |
swap(x) | 其中 x 表示一个同类型的 weak_ptr 类型指针,该函数可以互换 2 个同类型 weak_ptr 指针的内容。 |
reset() | 将当前 weak_ptr 指针置为空指针。 |
use_count() | 查看指向和当前 weak_ptr 指针相同的 shared_ptr 指针的数量。 |
expired() | 判断当前 weak_ptr 指针为否过期(指针为空,或者指向的堆内存已经被释放)。 |
lock() | 如果当前 weak_ptr 已经过期,则该函数会返回一个空的 shared_ptr 指针;反之,该函数返回一个和当前 weak_ptr 指向相同的 shared_ptr 指针。 |
再次强调,weak_ptr 模板类没有重载 * 和 -> 运算符,因此 weak_ptr 类型指针只能访问某一 shared_ptr 指针指向的堆内存空间,无法对其进行修改。
下面的样例演示了 weak_ptr 指针以及表 1 中部分成员方法的基本用法:
#include <iostream>
#include <memory>
using namespace std;
int main()
std::shared_ptr<int> sp1(new int(10));
std::shared_ptr<int> sp2(sp1);
std::weak_ptr<int> wp(sp2);
//输出和 wp 同指向的 shared_ptr 类型指针的数量
cout << wp.use_count() << endl;
//释放 sp2
sp2.reset();
cout << wp.use_count() << endl;
//借助 lock() 函数,返回一个和 wp 同指向的 shared_ptr 类型指针,获取其存储的数据
cout << *(wp.lock()) << endl;
return 0;
程序执行结果为:
2
1
10
有关表 1 中其它成员函数的用法,感兴趣的读者可直接查看 weak_ptr 官网。
以上是关于C11新特性之智能指针的主要内容,如果未能解决你的问题,请参考以下文章
C11新特性之std::function与std::bind