pytorch1.0 搭建LSTM网络

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pytorch1.0 搭建LSTM网络相关的知识,希望对你有一定的参考价值。

参考技术A torch.nn包下实现了LSTM函数,实现LSTM层。多个LSTMcell组合起来是LSTM。

LSTM自动实现了前向传播,不需要自己对序列进行迭代。

LSTM的用到的参数如下:创建LSTM指定如下参数,至少指定前三个参数

其中,指定batch_first=True​后,input就是(batch_size,seq_len,input_size)​

(h0,c0)是初始的隐藏层,因为每个LSTM单元其实需要两个隐藏层的。记hidden=(h0,c0)

其中,h0的维度是(num_layers*num_directions, batch_size, hidden_size)

c0维度同h0。注意,即使batch_first=True,这里h0的维度依然是batch_size在第二维度

其中,out是每一个时间步的最后一个隐藏层h的输出,假如有5个时间步(即seq_len=5),则有5个对应的输出,out的维度是:(batch_size,seq_len,hidden_size)

而hidden=(hn,cn),他自己实现了时间步的迭代,每次迭代需要使用上一步的输出和hidden层,最后一步hidden=(hn,cn)记录了最后一各时间步的隐藏层输出,有几层对应几个输出,如果这个是RNN-encoder,则hn,cn就是中间的编码向量。hn的维度是(num_layers*num_directions,batch_size,hidden_size),cn同。

基于pytorch搭建多特征LSTM时间序列预测代码详细解读(附完整代码)

文章目录

LSTM时间序列预测

对于LSTM神经网络的概念想必大家也是熟练掌握了,所以本文章不涉及对LSTM概念的解读,仅解释如何使用pytorch使用LSTM进行时间序列预测,复原使用代码实现的全流程。

数据获取与预处理

首先预览一下本次实验使用的数据集,该数据集共有三个特征,将最后一列的压气机出口温度作为标签预测(该数据集是我在git上收集到的)

定义一个xls文件读取的函数,其中data.iloc()函数是将dataframe中的数据进行切片,返回数据和标签

# 文件读取
def get_Data(data_path):

    data=pd.read_excel(data_path)
    data=data.iloc[:,:3]  # 以三个特征作为数据
    label=data.iloc[:,2:] # 取最后一个特征作为标签
    print(data.head())
    print(label.head())
    return data,label

使用sklearn中的preprocessing模块中的归一化函数对数据进行归一化处理,其中data=data.values函数是将dataframe中的数据从pd格式转换np数组,删除轴标签,fit_transform函数是fit()和transform()的组合,是将fit和transform合并,一步到位的结果,最后返回data,label和归一化的标签值

# 数据预处理
def normalization(data,label):

    mm_x=MinMaxScaler() # 导入sklearn的预处理容器
    mm_y=MinMaxScaler()
    data=data.values    # 将pd的系列格式转换为np的数组格式
    label=label.values
    data=mm_x.fit_transform(data) # 对数据和标签进行归一化等处理
    label=mm_y.fit_transform(label)
    return data,label,mm_y

我们将数据进行归一化之后,数据是np数组格式,我们需要将其转换成向量的格式存储在列表当中,因此,先创建两个空列表,建立一个for循环将预处理过的数据最后按x.size(0),seq_length,features)的纬度输出至列表当中。其中seq_length代表的是时间步长,x.size(0)则表示的是数据的第一维度,features代表的是数据的特征数。打印x,y的维度并返回x,y。

# 时间向量转换
def split_windows(data,seq_length):

    x=[]
    y=[]
    for i in range(len(data)-seq_length-1): # range的范围需要减去时间步长和1
        _x=data[i:(i+seq_length),:]
        _y=data[i+seq_length,-1]
        x.append(_x)
        y.append(_y)
    x,y=np.array(x),np.array(y)
    print('x.shape,y.shape=\\n',x.shape,y.shape)
    return x,y

将数据和标签都准备好之后即可分离数据,将数据分离成训练集和测试集。定义split_data()函数,其中split_ratio是设定的测试集比例,本次实验设置的训练集与测试集之比为9:1,即split_ratio=0.1。将分离好的数据分别装入Variable中封装好,并且将array转换成tensor格式,得到测试集和训练集。注意,一定要使用Variable函数对数据集进行封装,否则不支持后面torch的迭代。

# 数据分离
def split_data(x,y,split_ratio):

    train_size=int(len(y)*split_ratio)
    test_size=len(y)-train_size

    x_data=Variable(torch.Tensor(np.array(x)))
    y_data=Variable(torch.Tensor(np.array(y)))

    x_train=Variable(torch.Tensor(np.array(x[0:train_size])))
    y_train=Variable(torch.Tensor(np.array(y[0:train_size])))
    y_test=Variable(torch.Tensor(np.array(y[train_size:len(y)])))
    x_test=Variable(torch.Tensor(np.array(x[train_size:len(x)])))

    print('x_data.shape,y_data.shape,x_train.shape,y_train.shape,x_test.shape,y_test.shape:\\n'
    .format(x_data.shape,y_data.shape,x_train.shape,y_train.shape,x_test.shape,y_test.shape))

    return x_data,y_data,x_train,y_train,x_test,y_test

将封装好的训练集和测试集装入torch支持的可迭代对象torch.utils.data.DataLoader中,num_epochs是计算得到的迭代次数,返回train_loader,test_loader,num_epochs,这样,数据集就预处理好了,可以进行模型的搭建了。

# 数据装入
def data_generator(x_train,y_train,x_test,y_test,n_iters,batch_size):

    num_epochs=n_iters/(len(x_train)/batch_size) # n_iters代表一次迭代
    num_epochs=int(num_epochs)
    train_dataset=Data.TensorDataset(x_train,y_train)
    test_dataset=Data.TensorDataset(x_test,y_test)
    train_loader=torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=False,drop_last=True) # 加载数据集,使数据集可迭代
    test_loader=torch.utils.data.DataLoader(dataset=test_dataset,batch_size=batch_size,shuffle=False,drop_last=True)

    return train_loader,test_loader,num_epochs

模型构建

使用torch构建模型无非就是定义一个类,在这个类中定义一个模型实例和前向传播函数,就这么简单,接下来让我们来看看。

# 定义一个类
class Net(nn.Module):
    def __init__(self,input_size,hidden_size,num_layers,output_size,batch_size,seq_length) -> None:
        super(Net,self).__init__()
        self.input_size=input_size
        self.hidden_size=hidden_size
        self.num_layers=num_layers
        self.output_size=output_size
        self.batch_size=batch_size
        self.seq_length=seq_length
        self.num_directions=1 # 单向LSTM

        self.lstm=nn.LSTM(input_size=input_size,hidden_size=hidden_size,num_layers=num_layers,batch_first=True) # LSTM层
        self.fc=nn.Linear(hidden_size,output_size) # 全连接层

    def forward(self,x):
        # e.g.  x(10,3,100) 三个句子,十个单词,一百维的向量,nn.LSTM(input_size=100,hidden_size=20,num_layers=4)
        # out.shape=(10,3,20) h/c.shape=(4,b,20)
        batch_size, seq_len = x.size()[0], x.size()[1]    # x.shape=(604,3,3)
        h_0 = torch.randn(self.num_directions * self.num_layers, x.size(0), self.hidden_size)
        c_0 = torch.randn(self.num_directions * self.num_layers, x.size(0), self.hidden_size)
        # output(batch_size, seq_len, num_directions * hidden_size)
        output, _ = self.lstm(x, (h_0, c_0)) # output(5, 30, 64)
        pred = self.fc(output)  # (5, 30, 1)
        pred = pred[:, -1, :]  # (5, 1)
        return pred

首先定义一个实例,其中包括必须参数input_size,hidden_size,num_layers,output_size,batch_size,seq_length。将self.num_directions设置为1代表这是一个单项的LSTM,然后再添加一个lstm层和一个全连接层fc,lstm层输入维度为(input_size=input_size,hidden_size=hidden_size,num_layers=num_layers),设置了,batch_first=True则代表shape=(batch_size,seq_size,hidden_size),fc层的参数为(hidden_size,output_size),返回pred

训练与测试

训练模型,初始化i,(batch_x, batch_y),将train_loader设置为枚举类型,optimizer.zero_grad() 代表将每次传播时的梯度累积清除,torch中如果不声明optimizer.zero_grad()则会一直累积计算梯度,设置每100次输入打印一次损失

# train
iter=0
for epochs in range(num_epochs):
  for i,(batch_x, batch_y) in enumerate (train_loader):
    outputs = moudle(batch_x)
    optimizer.zero_grad()   # 将每次传播时的梯度累积清除
    # print(outputs.shape, batch_y.shape)
    loss = criterion(outputs,batch_y) # 计算损失
    loss.backward() # 反向传播
    optimizer.step()
    iter+=1
    if iter % 100 == 0:
      print("iter: %d, loss: %1.5f" % (iter, loss.item()))

最后几次损失如下

iter: 2400, loss: 0.00331
iter: 2500, loss: 0.00039
...
iter: 4400, loss: 0.00332
iter: 4500, loss: 0.00022
iter: 4600, loss: 0.00380
iter: 4700, loss: 0.00032

将最后训练集和测试集的MAE/RMSE画出,得到最终结果。

def result(x_data, y_data):
  moudle.eval()
  train_predict = moudle(x_data)

  data_predict = train_predict.data.numpy()
  y_data_plot = y_data.data.numpy()
  y_data_plot = np.reshape(y_data_plot, (-1,1))  
  data_predict = mm_y.inverse_transform(data_predict)
  y_data_plot = mm_y.inverse_transform(y_data_plot)

  plt.plot(y_data_plot)
  plt.plot(data_predict)
  plt.legend(('real', 'predict'),fontsize='15')
  plt.show()

  print('MAE/RMSE')
  print(mean_absolute_error(y_data_plot, data_predict))
  print(np.sqrt(mean_squared_error(y_data_plot, data_predict) ))

result(x_data, y_data)
result(x_test,y_test)



最终结果:训练集:MAE/RMSE:35.114613\\75.8706
测试集:MAE/RMSE:213.30313\\213.31061
本文仅作示范pytorch构建lstm的用法,预测结果不是很准确,像dropout等都没加,仅供参考。
完整代码见我的github:https://github.com/Tuniverj/Pytorch-lstm-forecast

以上是关于pytorch1.0 搭建LSTM网络的主要内容,如果未能解决你的问题,请参考以下文章

利用Keras搭建LSTM循环神经网络

python tensorflow 2.0 不使用 Keras 搭建简单的 LSTM 网络

教你搭建多变量时间序列预测模型LSTM(附代码数据集)

Keras中的LSTM

Tensorflow神经网络之LSTM

基于pytorch搭建多特征LSTM时间序列预测代码详细解读(附完整代码)